forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForeachBinaryOpScalarList.cu
166 lines (141 loc) · 8.46 KB
/
ForeachBinaryOpScalarList.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/cuda/ForeachFunctors.cuh>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/cuda/ForeachMinMaxFunctors.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_foreach_add_native.h>
#include <ATen/ops/_foreach_div_native.h>
#include <ATen/ops/_foreach_mul_native.h>
#include <ATen/ops/_foreach_sub_native.h>
#include <ATen/ops/_foreach_clamp_min_native.h>
#include <ATen/ops/_foreach_clamp_max_native.h>
#include <ATen/ops/_foreach_pow_native.h>
#include <ATen/ops/empty_like_native.h>
#endif
namespace at::native {
template<typename T, template<class> class Op>
std::vector<Tensor> foreach_binary_op(TensorList tensors, at::ArrayRef<Scalar> scalars) {
std::vector<std::vector<at::Tensor>> tensor_lists;
std::vector<at::Tensor> vec_res;
vec_res.reserve(tensors.size());
for (const auto& t: tensors) {
vec_res.emplace_back(at::native::empty_like(t));
}
tensor_lists.emplace_back(tensors.vec());
tensor_lists.emplace_back(vec_res);
using opmath_t = at::opmath_type<T>;
multi_tensor_apply<2, opmath_t>(tensor_lists,
scalars,
BinaryOpScalarListFunctor<T,
/* depth */ 2,
/* r_args_depth */ 1,
/* res_arg_index */ 1>(),
Op<opmath_t>());
return tensor_lists[1];
}
template<typename T, template<class> class Op>
void foreach_binary_op_(TensorList tensors, at::ArrayRef<Scalar> scalars) {
std::vector<std::vector<at::Tensor>> tensor_lists;
tensor_lists.emplace_back(tensors.vec());
using opmath_t = at::opmath_type<T>;
multi_tensor_apply<1, opmath_t>(tensor_lists,
scalars,
BinaryOpScalarListFunctor<T,
/* depth */ 1,
/* r_args_depth */ 1,
/* res_arg_index */ 0>(),
Op<opmath_t>());
increment_version(tensors);
}
template<template<class> class Op>
std::vector<Tensor> all_types_complex_bool_half_bfloat16(TensorList tensors, at::ArrayRef<Scalar> scalars) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda", [&]() {
return foreach_binary_op<scalar_t, Op>(tensors, scalars);
});
}
template<template<class> class Op>
void all_types_complex_bool_half_bfloat16_(TensorList tensors, at::ArrayRef<Scalar> scalars) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda_", [&]() {
foreach_binary_op_<scalar_t, Op>(tensors, scalars);
});
}
template<template<class> class Op>
std::vector<Tensor> all_types_half_bfloat16(TensorList tensors, at::ArrayRef<Scalar> scalars) {
return AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda", [&]() {
return foreach_binary_op<scalar_t, Op>(tensors, scalars);
});
}
template<template<class> class Op>
void all_types_half_bfloat16_(TensorList tensors, at::ArrayRef<Scalar> scalars) {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda_", [&]() {
foreach_binary_op_<scalar_t, Op>(tensors, scalars);
});
}
template<template<class> class Op>
std::vector<Tensor> all_types_complex_half_bfloat16(TensorList tensors, at::ArrayRef<Scalar> scalars) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda", [&]() {
return foreach_binary_op<scalar_t, Op>(tensors, scalars);
});
}
template<template<class> class Op>
void all_types_complex_half_bfloat16_(TensorList tensors, at::ArrayRef<Scalar> scalars) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda_", [&]() {
foreach_binary_op_<scalar_t, Op>(tensors, scalars);
});
}
#define FOREACH_BINARY_OP_SCALARLIST(FUNCTION, NAME, OP, DIV_OP) \
void foreach_tensor_##NAME##_scalarlist_kernel_cuda_(TensorList tensors, at::ArrayRef<Scalar> scalars) { \
check_foreach_api_restrictions(tensors, scalars); \
if (!can_use_fast_route(tensors, scalars, DIV_OP)) { \
return at::native::foreach_tensor_##NAME##_scalarlist_kernel_slow_(tensors, scalars); \
} \
\
FUNCTION##_<OP>(tensors, scalars); \
} \
\
std::vector<Tensor> foreach_tensor_##NAME##_scalarlist_kernel_cuda(TensorList tensors, at::ArrayRef<Scalar> scalars) { \
check_foreach_api_restrictions(tensors, scalars); \
if (!can_use_fast_route(tensors, scalars, DIV_OP)) { \
return at::native::foreach_tensor_##NAME##_scalarlist_kernel_slow(tensors, scalars); \
} \
\
return FUNCTION<OP>(tensors, scalars); \
}
FOREACH_BINARY_OP_SCALARLIST(all_types_complex_bool_half_bfloat16, add, std::plus, /*div_op*/ false);
FOREACH_BINARY_OP_SCALARLIST(all_types_complex_bool_half_bfloat16, mul, std::multiplies, /*div_op*/ false);
FOREACH_BINARY_OP_SCALARLIST(all_types_complex_bool_half_bfloat16, div, std::divides, /*div_op*/ true);
// See [Why is foreach_pow's division_op=true?]
FOREACH_BINARY_OP_SCALARLIST(all_types_complex_half_bfloat16, pow, power_functor, /*div_op*/ true);
// This does not use FOREACH_BINARY_OP_SCALARLIST because
// In the case of subtraction, we dont allow scalar to be boolean following the torch.sub logic
void foreach_tensor_sub_scalarlist_kernel_cuda_(TensorList tensors, at::ArrayRef<Scalar> scalars) {
check_foreach_api_restrictions(tensors, scalars);
for (const auto i: c10::irange(tensors.size())) {
sub_check(tensors[i], scalars[i]);
}
if (!can_use_fast_route({tensors}, scalars)) {
return at::native::foreach_tensor_sub_scalarlist_kernel_slow_(tensors, scalars);
}
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda_", [&]() {
foreach_binary_op_<scalar_t, std::minus>(tensors, scalars);
});
}
std::vector<Tensor> foreach_tensor_sub_scalarlist_kernel_cuda(TensorList tensors, at::ArrayRef<Scalar> scalars) {
check_foreach_api_restrictions(tensors, scalars);
for (const auto i: c10::irange(tensors.size())) {
sub_check(tensors[i], scalars[i]);
}
if (!can_use_fast_route({tensors}, scalars)) {
return at::native::foreach_tensor_sub_scalarlist_kernel_slow(tensors, scalars);
}
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kBool, kHalf, kBFloat16, tensors[0].scalar_type(), "foreach_binary_op_scalarlist_cuda_", [&]() {
return foreach_binary_op<scalar_t, std::minus>(tensors, scalars);
});
}
FOREACH_BINARY_OP_SCALARLIST(all_types_half_bfloat16, clamp_max, minimum, false);
FOREACH_BINARY_OP_SCALARLIST(all_types_half_bfloat16, clamp_min, maximum, false);
} // namespace at::native