forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStorageSharing.cpp
683 lines (620 loc) · 24.4 KB
/
StorageSharing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
#include <torch/csrc/python_headers.h>
#ifdef _MSC_VER
#include <c10/util/win32-headers.h>
#endif
#include <structmember.h>
#include <c10/core/CPUAllocator.h>
#include <libshm.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/copy_utils.h>
#include <c10/util/intrusive_ptr.h>
#include <fmt/format.h>
#include <torch/csrc/Storage.h>
#include <torch/csrc/StorageSharing.h>
#ifdef USE_CUDA
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_runtime.h>
#endif
#include <ATen/MapAllocator.h>
#include <ATen/StorageUtils.h>
#include <torch/csrc/utils/python_numbers.h>
#include <atomic>
#include <string>
static PyObject* THPStorage_sharedDecref(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPStorage*)_self;
c10::DeviceType device_type = self->cdata->device_type();
if (device_type == at::kCPU) {
c10::StorageImpl* storage = self->cdata;
THManagedMapAllocator* ctx =
THManagedMapAllocator::fromDataPtr(storage->data_ptr());
if (ctx) {
ctx->decref();
}
}
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_sharedIncref(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPStorage*)_self;
c10::DeviceType device_type = self->cdata->device_type();
if (device_type == at::kCPU) {
c10::StorageImpl* storage = self->cdata;
THManagedMapAllocator* ctx =
THManagedMapAllocator::fromDataPtr(storage->data_ptr());
if (ctx) {
ctx->incref();
}
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_pyNewFilenameStorage(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
long long size;
if (!PyArg_ParseTuple(args, "L", &size)) {
return nullptr;
}
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_EXCLUSIVE;
std::string handle = at::NewProcessWideShmHandle();
return THPStorage_New(c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
size,
THManagedMapAllocator::makeDataPtr("", handle.c_str(), flags, size),
/*allocator=*/nullptr,
/*resizable=*/false));
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_shareFilename(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
TORCH_CHECK(
reinterpret_cast<THPStorage*>(_self)->cdata->device_type() == at::kCPU,
"_share_filename_: only available on CPU");
auto self = (THPStorage*)_self;
c10::StorageImpl* self_storage_impl = self->cdata;
THManagedMapAllocator* ctx =
THManagedMapAllocator::fromDataPtr(self_storage_impl->data_ptr());
// Storage is already in shared memory, just return a handle
if (ctx) {
// done
} else {
// TODO: retry on collision
// TODO: free GIL - but remember to reacquire it when an exception is thrown
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_EXCLUSIVE;
std::string handle = at::NewProcessWideShmHandle();
// Create a new storage in shared memory
at::Storage new_storage(c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
self_storage_impl->nbytes(),
THManagedMapAllocator::makeDataPtr(
"", handle.c_str(), flags, self_storage_impl->nbytes()),
/*allocator=*/nullptr,
/*resizable=*/false));
at::Storage _self_aten = torch::createStorage(_self);
{
// Copying into shared memory can be slow, so release the GIL
pybind11::gil_scoped_release no_gil;
// Copy data from old storage into the new one
at::storage_copy(new_storage, _self_aten);
}
// Replace the old data_ptr and allocator with the new ones
c10::StorageImpl* new_storage_impl = new_storage.unsafeGetStorageImpl();
self_storage_impl->set_data_ptr(std::move(new_storage_impl->data_ptr()));
self_storage_impl->set_allocator(new_storage_impl->allocator());
ctx = THManagedMapAllocator::fromDataPtr(self_storage_impl->data_ptr());
AT_ASSERT(ctx);
}
THPObjectPtr manager_handle(PyBytes_FromString(ctx->manager_handle()));
if (!manager_handle)
return nullptr;
THPObjectPtr storage_handle(PyBytes_FromString(ctx->filename()));
if (!storage_handle)
return nullptr;
THPObjectPtr size(
THPUtils_packUInt64(self_storage_impl->nbytes() / sizeof(uint8_t)));
if (!size)
return nullptr;
THPObjectPtr tuple(PyTuple_New(3));
if (!tuple)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 0, manager_handle.release());
PyTuple_SET_ITEM(tuple.get(), 1, storage_handle.release());
PyTuple_SET_ITEM(tuple.get(), 2, size.release());
return tuple.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_newSharedFilename(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
THPUtils_assert(PyTuple_GET_SIZE(args) == 3, "tuple of 3 items expected");
PyObject* _manager_handle = PyTuple_GET_ITEM(args, 0);
PyObject* _object_handle = PyTuple_GET_ITEM(args, 1);
PyObject* _size = PyTuple_GET_ITEM(args, 2);
if (!PyBytes_Check(_manager_handle) || !PyBytes_Check(_object_handle) ||
!THPUtils_checkLong(_size)) {
THPUtils_invalidArguments(
args,
nullptr,
"_new_shared in file system mode",
1,
"a handle (string/bytes) and storage size (int)");
return nullptr;
}
const char* manager_handle = PyBytes_AS_STRING(_manager_handle);
const char* object_handle = PyBytes_AS_STRING(_object_handle);
int64_t size = THPUtils_unpackLong(_size);
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
return THPStorage_New(c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
size,
THManagedMapAllocator::makeDataPtr(
manager_handle, object_handle, flags, size),
/*allocator=*/nullptr,
/*resizable=*/false));
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_pyNewFdStorage(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
long long size;
if (!PyArg_ParseTuple(args, "L", &size)) {
return nullptr;
}
return THPStorage_New(at::new_shm_fd_storage(size));
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_shareFd(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
TORCH_CHECK(
reinterpret_cast<THPStorage*>(_self)->cdata->device_type() == at::kCPU,
"_share_fd_: only available on CPU");
auto self = (THPStorage*)_self;
c10::StorageImpl* self_storage_impl = self->cdata;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
at::MapAllocator* ctx;
// Storage is already in shared memory, just return a handle
if ((ctx = at::MapAllocator::fromDataPtr(self_storage_impl->data_ptr()))) {
// done
} else {
at::Storage new_storage(
at::new_shm_fd_storage(self_storage_impl->nbytes()));
at::Storage _self_aten = torch::createStorage(_self);
{
// Copying into shared memory can be slow, so release the GIL
pybind11::gil_scoped_release no_gil;
// Copy data from old storage into the new one
at::storage_copy(new_storage, _self_aten);
}
// Replace the old data_ptr and allocator with the new ones
c10::StorageImpl* new_storage_impl = new_storage.unsafeGetStorageImpl();
self_storage_impl->set_data_ptr(std::move(new_storage_impl->data_ptr()));
self_storage_impl->set_allocator(new_storage_impl->allocator());
ctx = at::MapAllocator::fromDataPtr(self_storage_impl->data_ptr());
AT_ASSERT(ctx);
}
THPObjectPtr storage_handle(THPUtils_packInt32(ctx->fd()));
if (!storage_handle)
return nullptr;
THPObjectPtr size(
THPUtils_packUInt64(self_storage_impl->nbytes() / sizeof(uint8_t)));
if (!size)
return nullptr;
THPObjectPtr tuple(PyTuple_New(2));
if (!tuple)
return nullptr;
PyTuple_SET_ITEM(tuple.get(), 0, storage_handle.release());
PyTuple_SET_ITEM(tuple.get(), 1, size.release());
return tuple.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_newSharedFd(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
THPUtils_assert(PyTuple_GET_SIZE(args) == 2, "tuple of 2 items expected");
PyObject* _tmp_fd = PyTuple_GET_ITEM(args, 0);
PyObject* _size = PyTuple_GET_ITEM(args, 1);
if (!THPUtils_checkLong(_tmp_fd) || !THPUtils_checkLong(_size)) {
THPUtils_invalidArguments(
args,
nullptr,
"_new_shared in file descriptor mode",
1,
"a file descriptor (int) and storage size (int)");
return nullptr;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int fd;
int tmp_fd = (int)THPUtils_unpackLong(_tmp_fd);
int64_t size = THPUtils_unpackLong(_size);
if ((fd = dup(tmp_fd)) == -1) {
THPUtils_setError("could not duplicate a shared memory file descriptor");
return nullptr;
}
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE |
at::ALLOCATOR_MAPPED_KEEPFD | at::ALLOCATOR_MAPPED_FROMFD;
return THPStorage_New(c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
size,
at::MapAllocator::makeDataPtr(at::WITH_FD, "", fd, flags, size, nullptr),
/*allocator=*/nullptr,
/*resizable=*/false));
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_shareCuda(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
#ifdef USE_CUDA
TORCH_CHECK(
reinterpret_cast<THPStorage*>(_self)->cdata->device_type() == at::kCUDA,
"_share_cuda_: only available on CUDA");
auto self = (THPStorage*)_self;
c10::StorageImpl* storage = self->cdata;
if (storage->received_cuda()) {
AT_ERROR(
"Attempted to send CUDA tensor received from another process; this is not currently supported. Consider cloning before sending.");
}
at::DeviceGuard device_guard(storage->device());
THPObjectPtr tuple(PyTuple_New(8));
THPObjectPtr device(THPUtils_packInt32(storage->device().index()));
THPObjectPtr _handle(Py_None);
Py_INCREF(Py_None);
THPObjectPtr size_bytes(THPUtils_packUInt64(storage->nbytes()));
THPObjectPtr _offset_bytes(THPUtils_packInt32(0));
THPObjectPtr _ref_counter(Py_None);
Py_INCREF(Py_None);
THPObjectPtr _ref_counter_offset(THPUtils_packInt32(0));
THPObjectPtr _event_handle(Py_None);
Py_INCREF(Py_None);
THPObjectPtr _event_sync_required(Py_None);
Py_INCREF(Py_None);
if (storage->data<uint8_t>()) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t base_size;
void* base_ptr = c10::cuda::CUDACachingAllocator::getBaseAllocation(
storage->data<uint8_t>(), &base_size);
ptrdiff_t offset_bytes = (char*)storage->data<uint8_t>() - (char*)base_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cudaIpcMemHandle_t handle;
C10_CUDA_CHECK(cudaIpcGetMemHandle(&handle, base_ptr));
_handle = PyBytes_FromStringAndSize((char*)&handle, CUDA_IPC_HANDLE_SIZE);
_offset_bytes = PyLong_FromSsize_t((Py_ssize_t)offset_bytes);
// Put Storage Data behind new ref counting context
// See Note [CUDA IPC Refcounting implementation explained]
at::DataPtr sent_data_ptr =
torch::GetNewRefCountedSentData(storage->data(), storage->device());
auto old_data_ptr = storage->set_data_ptr(std::move(sent_data_ptr));
auto sent_data =
static_cast<torch::CudaIPCSentData*>(storage->data_ptr().get_context());
sent_data->set_original_ptr(std::move(old_data_ptr));
_ref_counter = PyBytes_FromString((sent_data->handle()).c_str());
_ref_counter_offset = THPUtils_packInt64(sent_data->offset());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cudaIpcEventHandle_t ipc_event_handle;
if (sent_data->event_sync_required_) {
C10_CUDA_CHECK(
cudaIpcGetEventHandle(&ipc_event_handle, sent_data->event_));
}
_event_handle = PyBytes_FromStringAndSize(
(char*)&ipc_event_handle, CUDA_IPC_HANDLE_SIZE);
_event_sync_required = PyBool_FromLong(sent_data->event_sync_required_);
}
if (!tuple || !device || !_handle || !size_bytes || !_offset_bytes ||
!_event_handle) {
return nullptr;
}
PyTuple_SET_ITEM(tuple.get(), 0, device.release());
// cudaIpcMemHandle_t(of basePtr)
PyTuple_SET_ITEM(tuple.get(), 1, _handle.release());
// Size(in bytes) of the real storage, note this is not the size of basePtr
// memory block.
PyTuple_SET_ITEM(tuple.get(), 2, size_bytes.release());
// Offset(in bytes) of the real storage in the basePtr memory block.
// NB: this offset MUST be in bytes instead of numel, since we use
// (storage_handle, offset)
// as key in shared_cache(multiprocessing/reduction.py).
// Offset in numel cannot uniquely represent a storage.
PyTuple_SET_ITEM(tuple.get(), 3, _offset_bytes.release());
PyTuple_SET_ITEM(tuple.get(), 4, _ref_counter.release());
PyTuple_SET_ITEM(tuple.get(), 5, _ref_counter_offset.release());
PyTuple_SET_ITEM(tuple.get(), 6, _event_handle.release());
PyTuple_SET_ITEM(tuple.get(), 7, _event_sync_required.release());
return tuple.release();
#else
TORCH_CHECK(false, "CUDA is not available");
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THPStorage_releaseIPCCounter(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
#ifdef USE_CUDA
THPUtils_assert(PyTuple_GET_SIZE(args) == 2, "tuple of 2 items expected");
PyObject* _ref_counter = PyTuple_GET_ITEM(args, 0);
PyObject* _ref_counter_offset = PyTuple_GET_ITEM(args, 1);
if (!(PyBytes_Check(_ref_counter) &&
THPUtils_checkLong(_ref_counter_offset))) {
THPUtils_invalidArguments(
args,
nullptr,
"_release_ipc_counter in CUDA mode",
1,
"(bytes _ref_counter, int _ref_counter_offset)");
return nullptr;
}
std::string ref_counter_handle = PyBytes_AS_STRING(_ref_counter);
ptrdiff_t ref_counter_offset =
(ptrdiff_t)THPUtils_unpackLong(_ref_counter_offset);
// We don't want to break existing code, so resource deletion is best
// effort basis. Exception expected if producer process terminated
// before consumer released data.
int flags = at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
try {
auto sptr = at::RefcountedMapAllocator::makeDataPtr(
ref_counter_handle.c_str(),
flags,
sizeof(int64_t) * torch::CUDA_IPC_REF_COUNTER_FILE_SIZE,
nullptr);
*(static_cast<int64_t*>(sptr.get()) + ref_counter_offset) -= 1;
} catch (c10::Error& err) {
// Already warned inside of producer process
}
Py_RETURN_NONE;
#else
TORCH_CHECK(false, "CUDA is not available");
#endif
END_HANDLE_TH_ERRORS
}
#ifdef USE_CUDA
static std::string THPStorage_bytesAsHandleString(PyObject* handle) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
char* buffer;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t handle_size;
if (PyBytes_AsStringAndSize(handle, &buffer, &handle_size) == -1) {
// NOLINTNEXTLINE(bugprone-string-constructor)
return nullptr;
}
// NOLINTNEXTLINE(bugprone-string-constructor)
THPUtils_assert(handle_size == CUDA_IPC_HANDLE_SIZE, "incorrect handle size");
return std::string(buffer, handle_size);
}
#endif
static PyObject* THPStorage_newSharedCuda(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
#ifdef USE_CUDA
THPUtils_assert(PyTuple_GET_SIZE(args) == 8, "tuple of 8 items expected");
PyObject* _device = PyTuple_GET_ITEM(args, 0);
PyObject* _handle = PyTuple_GET_ITEM(args, 1);
PyObject* _size_bytes = PyTuple_GET_ITEM(args, 2);
PyObject* _offset_bytes = PyTuple_GET_ITEM(args, 3);
PyObject* _ref_counter = PyTuple_GET_ITEM(args, 4);
PyObject* _ref_counter_offset = PyTuple_GET_ITEM(args, 5);
PyObject* _event_handle = PyTuple_GET_ITEM(args, 6);
PyObject* _event_sync_required = PyTuple_GET_ITEM(args, 7);
if (!(THPUtils_checkLong(_device) && THPUtils_checkLong(_size_bytes) &&
PyBytes_Check(_handle) && PyBytes_Check(_ref_counter) &&
PyBytes_Check(_event_handle) && THPUtils_checkLong(_offset_bytes) &&
THPUtils_checkLong(_ref_counter_offset) &&
PyBool_Check(_event_sync_required))) {
THPUtils_invalidArguments(
args,
nullptr,
"_new_shared in CUDA mode",
1,
"(int device, bytes handle, int storage_size_bytes, int storage_offset_bytes, bytes _ref_counter, int _ref_counter_offset, bytes event_handle, bool event_sync_required)");
return nullptr;
}
size_t storage_size =
(size_t)THPUtils_unpackLong(_size_bytes) / sizeof(uint8_t);
ptrdiff_t storage_offset_bytes =
(ptrdiff_t)THPUtils_unpackLong(_offset_bytes);
int64_t device = THPUtils_unpackLong(_device);
at::cuda::CUDAGuard device_guard(device);
if (PyObject_IsTrue(_event_sync_required)) {
// Ensure that producer prepared all tensor's data
std::string s_ipc_event_handle =
THPStorage_bytesAsHandleString(_event_handle);
auto ipc_event_handle = reinterpret_cast<const cudaIpcEventHandle_t*>(
s_ipc_event_handle.c_str());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cudaEvent_t event;
cudaIpcOpenEventHandle(&event, *ipc_event_handle);
C10_CUDA_CHECK(
cudaStreamWaitEvent(c10::cuda::getCurrentCUDAStream(device), event, 0));
}
std::string s_handle = THPStorage_bytesAsHandleString(_handle);
std::shared_ptr<void> basePtr =
c10::cuda::CUDACachingAllocator::getIpcDevPtr(s_handle);
// Offset the basePtr to reconstruct the real storage
// devPtr = basePtr + storage_offset
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
void* devPtr = basePtr.get();
devPtr = (char*)devPtr + storage_offset_bytes;
std::string ref_counter_handle = PyBytes_AS_STRING(_ref_counter);
ptrdiff_t ref_counter_offset =
(ptrdiff_t)THPUtils_unpackLong(_ref_counter_offset);
struct IpcDeleterContext {
std::string ref_counter_handle;
ptrdiff_t ref_counter_offset;
int64_t device;
torch::CudaIPCReceivedData received_data;
};
auto ctx = std::make_unique<IpcDeleterContext>();
ctx->ref_counter_handle = std::move(ref_counter_handle);
ctx->ref_counter_offset = ref_counter_offset;
ctx->device = device;
ctx->received_data.shared_ptr_ = std::move(basePtr);
auto cur_device = at::cuda::current_device();
c10::DataPtr data_ptr(
devPtr,
ctx.release(),
+[](void* ctx_) {
std::unique_ptr<IpcDeleterContext> ctx(
static_cast<IpcDeleterContext*>(ctx_));
ctx->received_data.shared_ptr_.reset();
// Sync default stream to make sure all operations related to the
// storage is finished (otherwise another process may reuse memory and
// corrupt data)
// Ideally all shared memory reference counting could be replaced by
// sending untriggered CUDA event from the producer to consumer and
// using this event as the criteria of memory release. However, CUDA
// (atm 10.1) does not support the creation of untriggered events and
// performance impact of having thousands of shared events is unknown.
// TODO: Instead of cudaStreamSynchronize it is possible to add Stream
// Callback and release counter inside of it (need to check performance
// impact)
at::cuda::stream_synchronize(
c10::cuda::getCurrentCUDAStream(ctx->device));
// We don't want to break existing code, so resource deletion is best
// effort basis. Exception expected if producer process terminated
// before consumer released data.
int flags =
at::ALLOCATOR_MAPPED_SHAREDMEM | at::ALLOCATOR_MAPPED_NOCREATE;
try {
auto sptr = at::RefcountedMapAllocator::makeDataPtr(
ctx->ref_counter_handle.c_str(),
flags,
sizeof(int64_t) * torch::CUDA_IPC_REF_COUNTER_FILE_SIZE,
nullptr);
*(static_cast<int64_t*>(sptr.get()) + ctx->ref_counter_offset) -= 1;
} catch (c10::Error& err) {
// Already warned inside of producer process
}
},
at::Device(at::DeviceType::CUDA, cur_device));
auto base = c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
storage_size,
std::move(data_ptr),
/*allocator=*/nullptr,
/*resizable=*/false);
base->set_resizable(false);
base->set_received_cuda(true);
return THPStorage_New(std::move(base));
#else
TORCH_CHECK(false, "CUDA is not available");
#endif
END_HANDLE_TH_ERRORS
}
// Returns an object that holds a "weak" pointer to the c10::StorageImpl. This
// pointer keeps the c10::StorageImpl struct live, but does not retain the data
// pointer.
//
// NB: This does NOT preserve object identity when you call it multiple times
static PyObject* THPStorage_weakRef(PyObject* _self, PyObject* args) {
HANDLE_TH_ERRORS
auto self = (THPStorage*)_self;
c10::StorageImpl* storage = self->cdata;
return PyLong_FromVoidPtr(c10::raw::intrusive_ptr::make_weak(storage));
END_HANDLE_TH_ERRORS
}
PyObject* THPStorage_newWithWeakPtr(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "_new_with_weak_ptr(): arg must be an 'int'");
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
if (auto* storage = c10::raw::weak_intrusive_ptr::lock(weak_storage)) {
return THPStorage_New(
c10::intrusive_ptr<c10::StorageImpl>::reclaim(storage));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPStorage_freeWeakRef(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (arg == Py_None) {
Py_RETURN_NONE;
}
THPUtils_assert(
THPUtils_checkLong(arg), "_free_weak_ref(): arg must be an 'int'");
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
c10::raw::weak_intrusive_ptr::decref(weak_storage);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPStorage_expired(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "_expired(): arg must be an 'int'");
c10::StorageImpl* weak_storage = (c10::StorageImpl*)PyLong_AsVoidPtr(arg);
return PyBool_FromLong(
c10::raw::weak_intrusive_ptr::use_count(weak_storage) == 0);
END_HANDLE_TH_ERRORS
}
PyObject* THPStorage_sharedFd(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPStorage*)_self;
at::MapAllocator* ctx = nullptr;
if (self->cdata->device_type() == at::kCPU) {
c10::StorageImpl* storage = self->cdata;
ctx = at::MapAllocator::fromDataPtr(storage->data_ptr());
}
THPUtils_assert(ctx, "couldn't retrieve a shared file descriptor");
return THPUtils_packInt32(ctx->fd());
END_HANDLE_TH_ERRORS
}
PyObject* THPStorage_isShared(PyObject* _self, PyObject* noargs) {
auto self = (THPStorage*)_self;
if (self->cdata->device_type() == at::kCUDA) {
Py_RETURN_TRUE;
}
if (at::MapAllocator::fromDataPtr(self->cdata->data_ptr()) ||
THManagedMapAllocator::fromDataPtr(self->cdata->data_ptr())) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef THPStorage_sharingMethods[] = {
{"_new_with_weak_ptr",
THPStorage_newWithWeakPtr,
METH_O | METH_CLASS,
nullptr},
{"_share_cuda_", THPStorage_shareCuda, METH_NOARGS, nullptr},
{"_new_shared_cuda",
THPStorage_newSharedCuda,
METH_VARARGS | METH_STATIC,
nullptr},
{"_release_ipc_counter_cuda",
THPStorage_releaseIPCCounter,
METH_VARARGS | METH_STATIC,
nullptr},
{"_share_fd_cpu_", THPStorage_shareFd, METH_NOARGS, nullptr},
{"_new_shared_fd_cpu",
THPStorage_newSharedFd,
METH_VARARGS | METH_STATIC,
nullptr},
{"_new_using_fd_cpu",
THPStorage_pyNewFdStorage,
METH_VARARGS | METH_STATIC,
nullptr},
{"_share_filename_cpu_", THPStorage_shareFilename, METH_NOARGS, nullptr},
{"_new_shared_filename_cpu",
THPStorage_newSharedFilename,
METH_VARARGS | METH_STATIC,
nullptr},
{"_new_using_filename_cpu",
THPStorage_pyNewFilenameStorage,
METH_VARARGS | METH_STATIC,
nullptr},
{"_weak_ref", THPStorage_weakRef, METH_NOARGS, nullptr},
{"_free_weak_ref", THPStorage_freeWeakRef, METH_O | METH_STATIC, nullptr},
{"_expired", THPStorage_expired, METH_O | METH_STATIC, nullptr},
{"_shared_decref", THPStorage_sharedDecref, METH_NOARGS, nullptr},
{"_shared_incref", THPStorage_sharedIncref, METH_NOARGS, nullptr},
{"_get_shared_fd", THPStorage_sharedFd, METH_NOARGS, nullptr},
{"is_shared", THPStorage_isShared, METH_NOARGS, nullptr},
{nullptr}};
PyMethodDef* THPStorage_getSharingMethods() {
return THPStorage_sharingMethods;
}