-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit_dist.py
53 lines (38 loc) · 1.7 KB
/
fit_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
import scipy.optimize
import numpy as np
import scipy.stats
import code
def nbinom_pdf(val, n_successes, p_success):
return scipy.stats.nbinom.pmf(val, n_successes, p_success)
def poisson_pdf(val, param):
return scipy.stats.poisson.pmf(val, param)
def neg_log_likelihood_nbinom(params, values):
nll = 0.
cutoff = max(values) + 1
vals = np.array(range(cutoff))
nbinom_lik = nbinom_pdf(vals, params[0], params[1])
for i in range(np.shape(values)[0]):
nll += -np.log(nbinom_lik[values[i]])
return nll
def neg_log_likelihood_poisson(params, values):
nll = 0.
cutoff = max(values) + 1
vals = np.array(range(cutoff))
poisson_lik = poisson_pdf(vals, params[0])
for i in range(np.shape(values)[0]):
nll += -np.log(poisson_lik[values[i]])
return nll
def fit_lognorm_moments(mean, std, median):
wrapper = (lambda params: (scipy.stats.lognorm.mean(s=params[0], loc=params[1], scale=params[2]) - mean) ** 2 + (scipy.stats.lognorm.std(s=params[0], loc=params[1], scale=params[2]) - std) ** 2 + (scipy.stats.lognorm.median(s=params[0], loc=params[1], scale=params[2]) - median) ** 2)
res = scipy.optimize.minimize(wrapper, [1., 1., 1.], method='Nelder-Mead')
return res.x
def fit_neg_binom(data):
wrapper = (lambda params: neg_log_likelihood_nbinom(params, data))
res = scipy.optimize.minimize(wrapper, [1.518016, 0.892663], method='Nelder-Mead')
mean_dispersion = ((1 - res.x[1]) * res.x[0]/res.x[1], res.x[0])
return res.x, mean_dispersion
def fit_poisson(data):
wrapper = (lambda params: neg_log_likelihood_poisson(params, data))
res = scipy.optimize.minimize(wrapper, [1.518016], method='Nelder-Mead')
return res.x