For conversion, we assume that you are using MAC OS
machine. We follow CoreML tutorial, i.e.,
first convert the PyTorch model to JIT, and then convert to CoreML model.
We can convert the classification models using the following command
export CONFIG_FILE="LOCATION_OF_CONFIG_FILE"
export MODEL_WEIGHTS="LOCATION_OF_MODEL_WEIGHT_FILE"
cvnets-convert --common.config-file $CONFIG_FILE --common.results-loc coreml_models_cls --model.classification.pretrained $MODEL_WEIGHTS --conversion.coreml-extn mlmodel
We can convert the detection models trained on MS-COCO (81 classes, including background) using the following command
export CONFIG_FILE="LOCATION_OF_CONFIG_FILE"
export MODEL_WEIGHTS="LOCATION_OF_MODEL_WEIGHT_FILE"
export N_CLASSES="NUMBER_OF_CLASSES"
cvnets-convert --common.config-file $CONFIG_FILE --common.results-loc coreml_models_det --model.detection.pretrained $MODEL_WEIGHTS --conversion.coreml-extn mlmodel --model.detection.n-classes $N_CLASSES
We can convert the segmentation models using the following command
export CONFIG_FILE="LOCATION_OF_CONFIG_FILE"
export MODEL_WEIGHTS="LOCATION_OF_MODEL_WEIGHT_FILE"
export N_CLASSES="NUMBER_OF_CLASSES"
cvnets-convert --common.config-file $CONFIG_FILE --common.results-loc coreml_models_res --model.segmentation.pretrained $MODEL_WEIGHTS --conversion.coreml-extn mlmodel --model.segmentation.n-classes $N_CLASSES
We can convert MobileViTv2-1.0
classification model trained on ImageNet-1k dataset using below commands:
export CONFIG_FILE="https://docs-assets.developer.apple.com/ml-research/models/cvnets-v2/classification/mobilevitv2/imagenet1k/256x256/mobilevitv2-1.0.yaml"
export MODEL_WEIGHTS="https://docs-assets.developer.apple.com/ml-research/models/cvnets-v2/classification/mobilevitv2/imagenet1k/256x256/mobilevitv2-1.0.pt"
cvnets-convert --common.config-file $CONFIG_FILE --common.results-loc coreml_models_cls --model.classification.pretrained $MODEL_WEIGHTS --conversion.coreml-extn mlmodel