-
Notifications
You must be signed in to change notification settings - Fork 166
/
ECDSA.swift
525 lines (455 loc) · 20.8 KB
/
ECDSA.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
import Foundation
// MARK: - Generated file, do NOT edit
// any edits of this file WILL be overwritten and thus discarded
// see section `gyb` in `README` for details.
protocol NISTECDSASignature {
init<D: DataProtocol>(rawRepresentation: D) throws
init<D: DataProtocol>(derRepresentation: D) throws
var derRepresentation: Data { get }
var rawRepresentation: Data { get }
}
protocol NISTSigning {
associatedtype PublicKey: NISTECPublicKey & DataValidator & DigestValidator
associatedtype PrivateKey: NISTECPrivateKey & Signer
associatedtype ECDSASignature: NISTECDSASignature
}
// MARK: - P256 + Signing
extension P256.Signing {
/// A P-256 elliptic curve digital signature algorithm (ECDSA) signature.
public struct ECDSASignature: ContiguousBytes, NISTECDSASignature {
/// A raw data representation of a P-256 digital signature.
public var rawRepresentation: Data
/// Creates a P-256 digital signature from a raw representation.
///
/// - Parameters:
/// - rawRepresentation: A raw representation of the signature as a
/// collection of contiguous bytes.
public init<D: DataProtocol>(rawRepresentation: D) throws {
guard rawRepresentation.count == 2 * P256.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = Data(rawRepresentation)
}
internal init(_ dataRepresentation: Data) throws {
guard dataRepresentation.count == 2 * P256.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = dataRepresentation
}
var composite: (r: Data, s: Data) {
let combined = rawRepresentation
assert(combined.count % 2 == 0)
let half = combined.count / 2
return (combined.prefix(half), combined.suffix(half))
}
/// Creates a P-256 digital signature from a Distinguished Encoding
/// Rules (DER) encoded representation.
///
/// - Parameters:
/// - derRepresentation: The DER-encoded representation of the
/// signature.
public init<D: DataProtocol>(derRepresentation: D) throws {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let parsed = try ASN1.parse(Array(derRepresentation))
let signature = try ASN1.ECDSASignature<ArraySlice<UInt8>>(asn1Encoded: parsed)
let coordinateByteCount = P256.coordinateByteCount
guard signature.r.count <= coordinateByteCount && signature.s.count <= coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
// r and s must be padded out to the coordinate byte count.
var raw = Data()
raw.reserveCapacity(2 * P256.coordinateByteCount)
raw.append(contentsOf: repeatElement(0, count: P256.coordinateByteCount - signature.r.count))
raw.append(contentsOf: signature.r)
raw.append(contentsOf: repeatElement(0, count: P256.coordinateByteCount - signature.s.count))
raw.append(contentsOf: signature.s)
self.rawRepresentation = raw
#endif
}
/// Invokes the given closure with a buffer pointer covering the raw
/// bytes of the signature.
public func withUnsafeBytes<R>(_ body: (UnsafeRawBufferPointer) throws -> R) rethrows -> R {
try self.rawRepresentation.withUnsafeBytes(body)
}
/// A Distinguished Encoding Rules (DER) encoded representation of a
/// P-256 digital signature.
public var derRepresentation: Data {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let raw = rawRepresentation
let half = raw.count / 2
let r = Array(raw.prefix(half))[...]
let s = Array(raw.suffix(half))[...]
let sig = ASN1.ECDSASignature(r: r, s: s)
var serializer = ASN1.Serializer()
try! serializer.serialize(sig)
return Data(serializer.serializedBytes)
#endif
}
}
}
extension P256.Signing: NISTSigning {}
// MARK: - P256 + PrivateKey
extension P256.Signing.PrivateKey: DigestSigner {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the digest you provide over the P-256 elliptic curve.
///
/// - Parameters:
/// - digest: The digest of the data to sign.
/// - Returns: The signature corresponding to the digest. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: Digest>(for digest: D) throws -> P256.Signing.ECDSASignature {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return try self.coreCryptoSignature(for: digest)
#else
return try self.openSSLSignature(for: digest)
#endif
}
}
extension P256.Signing.PrivateKey: Signer {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the data you provide over the P-256 elliptic curve,
/// using SHA-256 as the hash function.
///
/// - Parameters:
/// - data: The data to sign.
/// - Returns: The signature corresponding to the data. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: DataProtocol>(for data: D) throws -> P256.Signing.ECDSASignature {
return try self.signature(for: SHA256.hash(data: data))
}
}
extension P256.Signing.PublicKey: DigestValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a digest over the P-256 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - digest: The signed digest.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given digest; otherwise, `false`.
public func isValidSignature<D: Digest>(_ signature: P256.Signing.ECDSASignature, for digest: D) -> Bool {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return self.coreCryptoIsValidSignature(signature, for: digest)
#else
return self.openSSLIsValidSignature(signature, for: digest)
#endif
}
}
extension P256.Signing.PublicKey: DataValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a block of data over the P-256 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - data: The signed data.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given data; otherwise, `false`.
public func isValidSignature<D: DataProtocol>(_ signature: P256.Signing.ECDSASignature, for data: D) -> Bool {
return self.isValidSignature(signature, for: SHA256.hash(data: data))
}
}
// MARK: - P384 + Signing
extension P384.Signing {
/// A P-384 elliptic curve digital signature algorithm (ECDSA) signature.
public struct ECDSASignature: ContiguousBytes, NISTECDSASignature {
/// A raw data representation of a P-384 digital signature.
public var rawRepresentation: Data
/// Creates a P-384 digital signature from a raw representation.
///
/// - Parameters:
/// - rawRepresentation: A raw representation of the signature as a
/// collection of contiguous bytes.
public init<D: DataProtocol>(rawRepresentation: D) throws {
guard rawRepresentation.count == 2 * P384.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = Data(rawRepresentation)
}
internal init(_ dataRepresentation: Data) throws {
guard dataRepresentation.count == 2 * P384.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = dataRepresentation
}
var composite: (r: Data, s: Data) {
let combined = rawRepresentation
assert(combined.count % 2 == 0)
let half = combined.count / 2
return (combined.prefix(half), combined.suffix(half))
}
/// Creates a P-384 digital signature from a Distinguished Encoding
/// Rules (DER) encoded representation.
///
/// - Parameters:
/// - derRepresentation: The DER-encoded representation of the
/// signature.
public init<D: DataProtocol>(derRepresentation: D) throws {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let parsed = try ASN1.parse(Array(derRepresentation))
let signature = try ASN1.ECDSASignature<ArraySlice<UInt8>>(asn1Encoded: parsed)
let coordinateByteCount = P384.coordinateByteCount
guard signature.r.count <= coordinateByteCount && signature.s.count <= coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
// r and s must be padded out to the coordinate byte count.
var raw = Data()
raw.reserveCapacity(2 * P384.coordinateByteCount)
raw.append(contentsOf: repeatElement(0, count: P384.coordinateByteCount - signature.r.count))
raw.append(contentsOf: signature.r)
raw.append(contentsOf: repeatElement(0, count: P384.coordinateByteCount - signature.s.count))
raw.append(contentsOf: signature.s)
self.rawRepresentation = raw
#endif
}
/// Invokes the given closure with a buffer pointer covering the raw
/// bytes of the signature.
public func withUnsafeBytes<R>(_ body: (UnsafeRawBufferPointer) throws -> R) rethrows -> R {
try self.rawRepresentation.withUnsafeBytes(body)
}
/// A Distinguished Encoding Rules (DER) encoded representation of a
/// P-384 digital signature.
public var derRepresentation: Data {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let raw = rawRepresentation
let half = raw.count / 2
let r = Array(raw.prefix(half))[...]
let s = Array(raw.suffix(half))[...]
let sig = ASN1.ECDSASignature(r: r, s: s)
var serializer = ASN1.Serializer()
try! serializer.serialize(sig)
return Data(serializer.serializedBytes)
#endif
}
}
}
extension P384.Signing: NISTSigning {}
// MARK: - P384 + PrivateKey
extension P384.Signing.PrivateKey: DigestSigner {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the digest you provide over the P-384 elliptic curve.
///
/// - Parameters:
/// - digest: The digest of the data to sign.
/// - Returns: The signature corresponding to the digest. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: Digest>(for digest: D) throws -> P384.Signing.ECDSASignature {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return try self.coreCryptoSignature(for: digest)
#else
return try self.openSSLSignature(for: digest)
#endif
}
}
extension P384.Signing.PrivateKey: Signer {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the data you provide over the P-384 elliptic curve,
/// using SHA-384 as the hash function.
///
/// - Parameters:
/// - data: The data to sign.
/// - Returns: The signature corresponding to the data. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: DataProtocol>(for data: D) throws -> P384.Signing.ECDSASignature {
return try self.signature(for: SHA384.hash(data: data))
}
}
extension P384.Signing.PublicKey: DigestValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a digest over the P-384 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - digest: The signed digest.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given digest; otherwise, `false`.
public func isValidSignature<D: Digest>(_ signature: P384.Signing.ECDSASignature, for digest: D) -> Bool {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return self.coreCryptoIsValidSignature(signature, for: digest)
#else
return self.openSSLIsValidSignature(signature, for: digest)
#endif
}
}
extension P384.Signing.PublicKey: DataValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a block of data over the P-384 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - data: The signed data.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given data; otherwise, `false`.
public func isValidSignature<D: DataProtocol>(_ signature: P384.Signing.ECDSASignature, for data: D) -> Bool {
return self.isValidSignature(signature, for: SHA384.hash(data: data))
}
}
// MARK: - P521 + Signing
extension P521.Signing {
/// A P-521 elliptic curve digital signature algorithm (ECDSA) signature.
public struct ECDSASignature: ContiguousBytes, NISTECDSASignature {
/// A raw data representation of a P-521 digital signature.
public var rawRepresentation: Data
/// Creates a P-521 digital signature from a raw representation.
///
/// - Parameters:
/// - rawRepresentation: A raw representation of the signature as a
/// collection of contiguous bytes.
public init<D: DataProtocol>(rawRepresentation: D) throws {
guard rawRepresentation.count == 2 * P521.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = Data(rawRepresentation)
}
internal init(_ dataRepresentation: Data) throws {
guard dataRepresentation.count == 2 * P521.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = dataRepresentation
}
var composite: (r: Data, s: Data) {
let combined = rawRepresentation
assert(combined.count % 2 == 0)
let half = combined.count / 2
return (combined.prefix(half), combined.suffix(half))
}
/// Creates a P-521 digital signature from a Distinguished Encoding
/// Rules (DER) encoded representation.
///
/// - Parameters:
/// - derRepresentation: The DER-encoded representation of the
/// signature.
public init<D: DataProtocol>(derRepresentation: D) throws {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let parsed = try ASN1.parse(Array(derRepresentation))
let signature = try ASN1.ECDSASignature<ArraySlice<UInt8>>(asn1Encoded: parsed)
let coordinateByteCount = P521.coordinateByteCount
guard signature.r.count <= coordinateByteCount && signature.s.count <= coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
// r and s must be padded out to the coordinate byte count.
var raw = Data()
raw.reserveCapacity(2 * P521.coordinateByteCount)
raw.append(contentsOf: repeatElement(0, count: P521.coordinateByteCount - signature.r.count))
raw.append(contentsOf: signature.r)
raw.append(contentsOf: repeatElement(0, count: P521.coordinateByteCount - signature.s.count))
raw.append(contentsOf: signature.s)
self.rawRepresentation = raw
#endif
}
/// Invokes the given closure with a buffer pointer covering the raw
/// bytes of the signature.
public func withUnsafeBytes<R>(_ body: (UnsafeRawBufferPointer) throws -> R) rethrows -> R {
try self.rawRepresentation.withUnsafeBytes(body)
}
/// A Distinguished Encoding Rules (DER) encoded representation of a
/// P-521 digital signature.
public var derRepresentation: Data {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let raw = rawRepresentation
let half = raw.count / 2
let r = Array(raw.prefix(half))[...]
let s = Array(raw.suffix(half))[...]
let sig = ASN1.ECDSASignature(r: r, s: s)
var serializer = ASN1.Serializer()
try! serializer.serialize(sig)
return Data(serializer.serializedBytes)
#endif
}
}
}
extension P521.Signing: NISTSigning {}
// MARK: - P521 + PrivateKey
extension P521.Signing.PrivateKey: DigestSigner {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the digest you provide over the P-521 elliptic curve.
///
/// - Parameters:
/// - digest: The digest of the data to sign.
/// - Returns: The signature corresponding to the digest. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: Digest>(for digest: D) throws -> P521.Signing.ECDSASignature {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return try self.coreCryptoSignature(for: digest)
#else
return try self.openSSLSignature(for: digest)
#endif
}
}
extension P521.Signing.PrivateKey: Signer {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the data you provide over the P-521 elliptic curve,
/// using SHA-512 as the hash function.
///
/// - Parameters:
/// - data: The data to sign.
/// - Returns: The signature corresponding to the data. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: DataProtocol>(for data: D) throws -> P521.Signing.ECDSASignature {
return try self.signature(for: SHA512.hash(data: data))
}
}
extension P521.Signing.PublicKey: DigestValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a digest over the P-521 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - digest: The signed digest.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given digest; otherwise, `false`.
public func isValidSignature<D: Digest>(_ signature: P521.Signing.ECDSASignature, for digest: D) -> Bool {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return self.coreCryptoIsValidSignature(signature, for: digest)
#else
return self.openSSLIsValidSignature(signature, for: digest)
#endif
}
}
extension P521.Signing.PublicKey: DataValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a block of data over the P-521 elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - data: The signed data.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given data; otherwise, `false`.
public func isValidSignature<D: DataProtocol>(_ signature: P521.Signing.ECDSASignature, for data: D) -> Bool {
return self.isValidSignature(signature, for: SHA512.hash(data: data))
}
}
#endif // Linux or !SwiftPM