-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
ReflectionMirror.cpp
1200 lines (1008 loc) · 37.6 KB
/
ReflectionMirror.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifdef SWIFT_ENABLE_REFLECTION
#include "ImageInspection.h"
#include "Private.h"
#include "WeakReference.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/Unreachable.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/Enum.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Portability.h"
#include "swift/Runtime/Reflection.h"
#include "swift/shims/Reflection.h"
#include <cassert>
#include <cinttypes>
#include <cstdio>
#include <cstring>
#include <new>
#include <string>
#include <tuple>
#if SWIFT_OBJC_INTEROP
#include "swift/Runtime/ObjCBridge.h"
#include "SwiftObject.h"
#endif
using namespace swift;
namespace {
class FieldType {
const Metadata *type;
bool indirect;
bool var = false;
TypeReferenceOwnership referenceOwnership;
public:
constexpr FieldType() : type(nullptr), indirect(false), referenceOwnership() { }
constexpr FieldType(const Metadata *T) : type(T), indirect(false), referenceOwnership() { }
static constexpr FieldType untypedEnumCase(bool indirect) {
FieldType type{};
type.indirect = indirect;
return type;
}
const Metadata *getType() const { return type; }
const TypeReferenceOwnership getReferenceOwnership() const { return referenceOwnership; }
bool isIndirect() const { return indirect; }
void setIndirect(bool value) { indirect = value; }
bool isVar() const { return var; }
void setIsVar(bool value) { var = value; }
void setReferenceOwnership(TypeReferenceOwnership newOwnership) {
referenceOwnership = newOwnership;
}
};
/// The layout of Any.
using Any = OpaqueExistentialContainer;
// Swift assumes Any is returned in memory.
// Use AnyReturn to guarantee that even on architectures
// where Any would be returned in registers.
struct AnyReturn {
Any any;
AnyReturn(Any a) : any(a) { }
operator Any() { return any; }
~AnyReturn() { }
};
static std::tuple<const Metadata *, OpaqueValue *>
unwrapExistential(const Metadata *T, OpaqueValue *Value) {
// If the value is an existential container, look through it to reflect the
// contained value.
// TODO: Should look through existential metatypes too, but it doesn't
// really matter yet since we don't have any special mirror behavior for
// concrete metatypes yet.
for (;;) {
switch (T->getKind()) {
case MetadataKind::Existential: {
auto *existential
= static_cast<const ExistentialTypeMetadata *>(T);
T = existential->getDynamicType(Value);
Value = existential->projectValue(Value);
break;
}
case MetadataKind::ExtendedExistential: {
auto *existential
= static_cast<const ExtendedExistentialTypeMetadata *>(T);
switch (existential->Shape->Flags.getSpecialKind()) {
case ExtendedExistentialTypeShape::SpecialKind::None: {
auto opaqueContainer =
reinterpret_cast<OpaqueExistentialContainer *>(Value);
T = opaqueContainer->Type;
Value = const_cast<OpaqueValue *>(opaqueContainer->projectValue());
break;
}
case ExtendedExistentialTypeShape::SpecialKind::Class: {
auto classContainer =
reinterpret_cast<ClassExistentialContainer *>(Value);
T = swift_getObjectType((HeapObject *)classContainer->Value);
Value = reinterpret_cast<OpaqueValue *>(&classContainer->Value);
break;
}
case ExtendedExistentialTypeShape::SpecialKind::Metatype: {
auto srcExistentialContainer =
reinterpret_cast<ExistentialMetatypeContainer *>(Value);
T = swift_getMetatypeMetadata(srcExistentialContainer->Value);
Value = reinterpret_cast<OpaqueValue *>(&srcExistentialContainer->Value);
break;
}
case ExtendedExistentialTypeShape::SpecialKind::ExplicitLayout: {
swift_unreachable("Extended Existential with explicit layout not supported");
break;
}
}
break;
}
default:
return std::make_tuple(T, Value);
}
}
}
static void copyWeakFieldContents(OpaqueValue *destContainer, const Metadata *type, OpaqueValue *fieldData) {
assert(type->getKind() == MetadataKind::Optional);
auto *srcContainer = reinterpret_cast<WeakClassExistentialContainer*>(fieldData);
auto *destClassContainer = reinterpret_cast<ClassExistentialContainer*>(destContainer);
destClassContainer->Value = swift_unknownObjectWeakLoadStrong(&srcContainer->Value);
auto witnessTablesSize = type->vw_size() - sizeof(WeakClassExistentialContainer);
memcpy(destClassContainer->getWitnessTables(), srcContainer->getWitnessTables(), witnessTablesSize);
}
static void copyUnownedFieldContents(OpaqueValue *destContainer, const Metadata *type, OpaqueValue *fieldData) {
auto *srcContainer = reinterpret_cast<UnownedClassExistentialContainer*>(fieldData);
auto *destClassContainer = reinterpret_cast<ClassExistentialContainer*>(destContainer);
destClassContainer->Value = swift_unknownObjectUnownedLoadStrong(&srcContainer->Value);
auto witnessTablesSize = type->vw_size() - sizeof(UnownedClassExistentialContainer);
memcpy(destClassContainer->getWitnessTables(), srcContainer->getWitnessTables(), witnessTablesSize);
}
static void copyUnmanagedFieldContents(OpaqueValue *destContainer, const Metadata *type, OpaqueValue *fieldData) {
// Also known as "unowned(unsafe)".
// This is simpler than the unowned/weak cases because unmanaged
// references are fundamentally the same as strong ones, so we
// can use the regular strong reference support that already
// knows how to handle existentials and Obj-C references.
type->vw_initializeWithCopy(destContainer, fieldData);
}
static AnyReturn copyFieldContents(OpaqueValue *fieldData,
const FieldType fieldType) {
Any outValue;
auto *type = fieldType.getType();
outValue.Type = type;
auto ownership = fieldType.getReferenceOwnership();
auto *destContainer = type->allocateBoxForExistentialIn(&outValue.Buffer);
// If the field's type is a thin metatype, then there's no actual data at
// fieldData, and we need to obtain the metatype value from the field type.
if (auto *metatype = dyn_cast<MetatypeMetadata>(type)) {
switch (metatype->InstanceType->getKind()) {
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential: {
// These kinds don't have subtypes and thus have thin representations.
auto asOpaque = const_cast<OpaqueValue *>(
reinterpret_cast<const OpaqueValue *>(&metatype->InstanceType));
type->vw_initializeWithCopy(destContainer, asOpaque);
return AnyReturn(outValue);
}
default:
// Other kinds have subtypes and will not have a thin representation.
break;
}
}
if (ownership.isStrong()) {
type->vw_initializeWithCopy(destContainer, fieldData);
}
// Generate a conditional clause for every known ownership type.
// If this causes errors, it's because someone added a new ownership type
// to ReferenceStorage.def and missed some related updates.
#define REF_STORAGE(Name, ...) \
else if (ownership.is##Name()) { \
copy##Name##FieldContents(destContainer, type, fieldData); \
}
#include "swift/AST/ReferenceStorage.def"
else {
// The field was declared with a reference type we don't understand.
warning(0, "Value with unrecognized reference type is reflected as ()");
// Clean up the buffer allocated above
type->deallocateBoxForExistentialIn(&outValue.Buffer);
// Return an existential containing Void
outValue.Type = &METADATA_SYM(EMPTY_TUPLE_MANGLING);
}
return AnyReturn(outValue);
}
// Abstract base class for reflection implementations.
struct ReflectionMirrorImpl {
const Metadata *type;
OpaqueValue *value;
virtual char displayStyle() = 0;
virtual intptr_t count() = 0;
virtual intptr_t childOffset(intptr_t index) = 0;
virtual const FieldType childMetadata(intptr_t index,
const char **outName,
void (**outFreeFunc)(const char *)) = 0;
virtual AnyReturn subscript(intptr_t index, const char **outName,
void (**outFreeFunc)(const char *)) = 0;
virtual const char *enumCaseName() { return nullptr; }
#if SWIFT_OBJC_INTEROP
virtual id quickLookObject() { return nil; }
#endif
// For class types, traverse through superclasses when providing field
// information. The base implementations call through to their local-only
// counterparts.
virtual intptr_t recursiveCount() {
return count();
}
virtual intptr_t recursiveChildOffset(intptr_t index) {
return childOffset(index);
}
virtual const FieldType recursiveChildMetadata(intptr_t index,
const char **outName,
void (**outFreeFunc)(const char *))
{
return childMetadata(index, outName, outFreeFunc);
}
virtual ~ReflectionMirrorImpl() {}
};
// Implementation for tuples.
struct TupleImpl : ReflectionMirrorImpl {
char displayStyle() override {
return 't';
}
intptr_t count() override {
auto *Tuple = static_cast<const TupleTypeMetadata *>(type);
return Tuple->NumElements;
}
intptr_t childOffset(intptr_t i) override {
auto *Tuple = static_cast<const TupleTypeMetadata *>(type);
if (i < 0 || (size_t)i > Tuple->NumElements)
swift::crash("Swift mirror subscript bounds check failure");
// Get the nth element.
auto &elt = Tuple->getElement(i);
return elt.Offset;
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
auto *Tuple = static_cast<const TupleTypeMetadata *>(type);
if (i < 0 || (size_t)i > Tuple->NumElements)
swift::crash("Swift mirror subscript bounds check failure");
// Determine whether there is a label.
bool hasLabel = false;
if (const char *labels = Tuple->Labels) {
const char *space = strchr(labels, ' ');
for (intptr_t j = 0; j != i && space; ++j) {
labels = space + 1;
space = strchr(labels, ' ');
}
// If we have a label, create it.
if (labels && space && labels != space) {
size_t labelLen = space - labels;
char *label = (char *)malloc(labelLen + 1);
memcpy(label, labels, labelLen);
label[labelLen] = '\0'; // 0-terminate the string
*outName = label;
hasLabel = true;
}
}
if (!hasLabel) {
// The name is the stringized element number '.0'.
char *str;
swift_asprintf(&str, ".%" PRIdPTR, i);
*outName = str;
}
*outFreeFunc = [](const char *str) { free(const_cast<char *>(str)); };
// Get the nth element.
auto &elt = Tuple->getElement(i);
FieldType result(elt.Type);
// All tuples are mutable.
result.setIsVar(true);
return result;
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
auto eltOffset = childOffset(i);
auto fieldType = childMetadata(i, outName, outFreeFunc);
auto *bytes = reinterpret_cast<const char *>(value);
auto *eltData = reinterpret_cast<const OpaqueValue *>(bytes + eltOffset);
Any result;
result.Type = fieldType.getType();
auto *opaqueValueAddr = result.Type->allocateBoxForExistentialIn(&result.Buffer);
result.Type->vw_initializeWithCopy(opaqueValueAddr,
const_cast<OpaqueValue *>(eltData));
return AnyReturn(result);
}
};
struct swift_closure {
void *fptr;
HeapObject *context;
};
#if SWIFT_LIBRARY_EVOLUTION
SWIFT_RUNTIME_STDLIB_API SWIFT_CC(swift) swift_closure
MANGLE_SYM(s20_playgroundPrintHookySScSgvg)();
#else
SWIFT_RUNTIME_STDLIB_API swift_closure
MANGLE_SYM(s20_playgroundPrintHookySScSgvp);
#endif
static bool _shouldReportMissingReflectionMetadataWarnings() {
// Missing metadata warnings noise up playground sessions and aren't really
// actionable in playground contexts. If we're running in a playground,
// suppress warnings.
//
// Guesstimate whether we're in a playground by looking at the
// _playgroundPrintHook variable in the standard library, which is set during
// playground execution.
#if SWIFT_LIBRARY_EVOLUTION
auto hook = MANGLE_SYM(s20_playgroundPrintHookySScSgvg)();
#else
auto hook = MANGLE_SYM(s20_playgroundPrintHookySScSgvp);
#endif
if (hook.fptr) {
swift_release(hook.context);
return false;
} else {
return true;
}
}
/// Raise a warning about reflection metadata that could not be found
/// at runtime. This is usually mostly harmless, but it's good to alert
/// users that it happens.
static void
SWIFT_FORMAT(1, 2)
missing_reflection_metadata_warning(const char *fmt, ...) {
bool shouldWarn =
SWIFT_LAZY_CONSTANT(_shouldReportMissingReflectionMetadataWarnings());
if (!shouldWarn)
return;
va_list args;
va_start(args, fmt);
warningv(0, fmt, args);
}
static std::pair<StringRef /*name*/, FieldType /*fieldInfo*/>
getFieldAt(const Metadata *base, unsigned index) {
using namespace reflection;
// If we failed to find the field descriptor metadata for the type, fall
// back to returning an empty tuple as a standin.
auto failedToFindMetadata = [&]() -> std::pair<StringRef, FieldType> {
auto typeName = swift_getTypeName(base, /*qualified*/ true);
missing_reflection_metadata_warning(
"warning: the Swift runtime found no field metadata for "
"type '%*s' that claims to be reflectable. Its fields will show up as "
"'unknown' in Mirrors\n",
(int)typeName.length, typeName.data);
return {"unknown", FieldType(&METADATA_SYM(EMPTY_TUPLE_MANGLING))};
};
auto *baseDesc = base->getTypeContextDescriptor();
if (!baseDesc)
return failedToFindMetadata();
auto *fields = baseDesc->Fields.get();
if (!fields)
return failedToFindMetadata();
auto &field = fields->getFields()[index];
// Bounds are always valid as the offset is constant.
auto name = field.getFieldName();
// Enum cases don't always have types.
if (!field.hasMangledTypeName())
return {name, FieldType::untypedEnumCase(field.isIndirectCase())};
auto typeName = field.getMangledTypeName();
SubstGenericParametersFromMetadata substitutions(base);
auto result = swift_getTypeByMangledName(
MetadataState::Complete, typeName, substitutions.getGenericArgs(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
// If demangling the type failed, pretend it's an empty type instead with
// a log message.
TypeInfo typeInfo;
if (result.isError()) {
typeInfo = TypeInfo({&METADATA_SYM(EMPTY_TUPLE_MANGLING),
MetadataState::Complete}, {});
auto *error = result.getError();
char *str = error->copyErrorString();
missing_reflection_metadata_warning(
"warning: the Swift runtime was unable to demangle the type "
"of field '%*s'. the mangled type name is '%*s': %s. this field will "
"show up as an empty tuple in Mirrors\n",
(int)name.size(), name.data(), (int)typeName.size(), typeName.data(),
str);
error->freeErrorString(str);
} else {
typeInfo = result.getType();
}
auto fieldType = FieldType(typeInfo.getMetadata());
fieldType.setIndirect(field.isIndirectCase());
fieldType.setReferenceOwnership(typeInfo.getReferenceOwnership());
fieldType.setIsVar(field.isVar());
return {name, fieldType};
}
// Implementation for structs.
struct StructImpl : ReflectionMirrorImpl {
bool isReflectable() {
const auto *Struct = static_cast<const StructMetadata *>(type);
const auto &Description = Struct->getDescription();
return Description->isReflectable();
}
char displayStyle() override {
return 's';
}
intptr_t count() override {
if (!isReflectable()) {
return 0;
}
auto *Struct = static_cast<const StructMetadata *>(type);
return Struct->getDescription()->NumFields;
}
intptr_t childOffset(intptr_t i) override {
auto *Struct = static_cast<const StructMetadata *>(type);
if (i < 0 || (size_t)i > Struct->getDescription()->NumFields)
swift::crash("Swift mirror subscript bounds check failure");
// Load the offset from its respective vector.
return Struct->getFieldOffsets()[i];
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
StringRef name;
FieldType fieldInfo;
std::tie(name, fieldInfo) = getFieldAt(type, i);
assert(!fieldInfo.isIndirect() && "indirect struct fields not implemented");
*outName = name.data();
*outFreeFunc = nullptr;
return fieldInfo;
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
auto fieldInfo = childMetadata(i, outName, outFreeFunc);
auto *bytes = reinterpret_cast<char*>(value);
auto fieldOffset = childOffset(i);
auto *fieldData = reinterpret_cast<OpaqueValue *>(bytes + fieldOffset);
return copyFieldContents(fieldData, fieldInfo);
}
};
struct ForeignReferenceTypeImpl : ReflectionMirrorImpl {
bool isReflectable() {
return false;
}
char displayStyle() override {
return 'f';
}
intptr_t count() override {
return 0;
}
intptr_t childOffset(intptr_t i) override {
swift::crash("Cannot find offset of FRT.");
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("FRT has no children.");
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("FRT has no subscript.");
}
};
// Implementation for enums.
struct EnumImpl : ReflectionMirrorImpl {
bool isReflectable() {
const auto *Enum = static_cast<const EnumMetadata *>(type);
const auto &Description = Enum->getDescription();
return Description->isReflectable();
}
const char *getInfo(unsigned *tagPtr = nullptr,
const Metadata **payloadTypePtr = nullptr,
bool *indirectPtr = nullptr) {
// 'tag' is in the range [0..NumElements-1].
unsigned tag = type->vw_getEnumTag(value);
StringRef name;
FieldType info;
std::tie(name, info) = getFieldAt(type, tag);
const Metadata *payloadType = info.getType();
bool indirect = info.isIndirect();
if (tagPtr)
*tagPtr = tag;
if (payloadTypePtr)
*payloadTypePtr = payloadType;
if (indirectPtr)
*indirectPtr = indirect;
return name.data();
}
char displayStyle() override {
return 'e';
}
intptr_t count() override {
if (!isReflectable()) {
return 0;
}
// No fields if reflecting the enumeration type instead of a case
if (!value) {
return 0;
}
const Metadata *payloadType;
getInfo(nullptr, &payloadType, nullptr);
return (payloadType != nullptr) ? 1 : 0;
}
intptr_t childOffset(intptr_t i) override {
return 0;
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
return FieldType();
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
unsigned tag;
const Metadata *payloadType;
bool indirect;
auto *caseName = getInfo(&tag, &payloadType, &indirect);
// Copy the enum itself so that we can project the data without destroying
// the original.
Any enumCopy;
auto *enumCopyContainer
= type->allocateBoxForExistentialIn(&enumCopy.Buffer);
type->vw_initializeWithCopy(enumCopyContainer,
const_cast<OpaqueValue *>(value));
// Copy the enum payload into a box
const Metadata *boxType = (indirect ? &METADATA_SYM(Bo).base : payloadType);
BoxPair pair = swift_allocBox(boxType);
type->vw_destructiveProjectEnumData(enumCopyContainer);
boxType->vw_initializeWithTake(pair.buffer, enumCopyContainer);
type->deallocateBoxForExistentialIn(&enumCopy.Buffer);
value = pair.buffer;
// If the payload is indirect, we need to jump through the box to get it.
if (indirect) {
const HeapObject *owner = *reinterpret_cast<HeapObject * const *>(value);
value = swift_projectBox(const_cast<HeapObject *>(owner));
}
*outName = caseName;
*outFreeFunc = nullptr;
Any result;
result.Type = payloadType;
auto *opaqueValueAddr = result.Type->allocateBoxForExistentialIn(&result.Buffer);
result.Type->vw_initializeWithCopy(opaqueValueAddr,
const_cast<OpaqueValue *>(value));
swift_release(pair.object);
return AnyReturn(result);
}
const char *enumCaseName() override {
if (!isReflectable()) {
return nullptr;
}
return getInfo();
}
};
// Implementation for classes.
struct ClassImpl : ReflectionMirrorImpl {
bool isReflectable() {
const auto *Class = static_cast<const ClassMetadata *>(type);
const auto &Description = Class->getDescription();
return Description->isReflectable();
}
char displayStyle() override {
return 'c';
}
bool hasSuperclassMirror() {
auto *Clazz = static_cast<const ClassMetadata*>(type);
auto description = Clazz->getDescription();
return ((description->SuperclassType)
&& (Clazz->Superclass)
&& (Clazz->Superclass->isTypeMetadata()));
}
ClassImpl superclassMirror() {
auto *Clazz = static_cast<const ClassMetadata*>(type);
auto description = Clazz->getDescription();
if (description->SuperclassType) {
if (auto theSuperclass = Clazz->Superclass) {
auto impl = ClassImpl();
impl.type = (Metadata *)theSuperclass;
impl.value = nullptr;
return impl;
}
}
swift::crash("No superclass mirror found");
}
intptr_t count() override {
if (!isReflectable())
return 0;
auto *Clazz = static_cast<const ClassMetadata*>(type);
auto description = Clazz->getDescription();
auto count = description->NumFields;
return count;
}
intptr_t recursiveCount() override {
if (hasSuperclassMirror()) {
return superclassMirror().recursiveCount() + count();
}
return count();
}
intptr_t childOffset(intptr_t i) override {
auto *Clazz = static_cast<const ClassMetadata*>(type);
auto description = Clazz->getDescription();
if (i < 0 || (size_t)i > description->NumFields)
swift::crash("Swift mirror subscript bounds check failure");
// FIXME: If the class has ObjC heritage, get the field offset using the ObjC
// metadata, because we don't update the field offsets in the face of
// resilient base classes.
uintptr_t fieldOffset;
if (usesNativeSwiftReferenceCounting(Clazz)) {
fieldOffset = Clazz->getFieldOffsets()[i];
} else {
#if SWIFT_OBJC_INTEROP
Ivar *ivars = class_copyIvarList(
reinterpret_cast<Class>(const_cast<ClassMetadata *>(Clazz)), nullptr);
fieldOffset = ivar_getOffset(ivars[i]);
free(ivars);
#else
swift::crash("Object appears to be Objective-C, but no runtime.");
#endif
}
return (intptr_t)fieldOffset;
}
intptr_t recursiveChildOffset(intptr_t i) override {
if (hasSuperclassMirror()) {
auto superMirror = superclassMirror();
auto superclassFieldCount = superMirror.recursiveCount();
if (i < superclassFieldCount) {
return superMirror.recursiveChildOffset(i);
} else {
i -= superclassFieldCount;
}
}
return childOffset(i);
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
StringRef name;
FieldType fieldInfo;
std::tie(name, fieldInfo) = getFieldAt(type, i);
assert(!fieldInfo.isIndirect() && "class indirect properties not implemented");
*outName = name.data();
*outFreeFunc = nullptr;
return fieldInfo;
}
const FieldType recursiveChildMetadata(intptr_t i,
const char **outName,
void (**outFreeFunc)(const char *)) override {
if (hasSuperclassMirror()) {
auto superMirror = superclassMirror();
auto superclassFieldCount = superMirror.recursiveCount();
if (i < superclassFieldCount) {
return superMirror.recursiveChildMetadata(i, outName, outFreeFunc);
} else {
i -= superclassFieldCount;
}
}
return childMetadata(i, outName, outFreeFunc);
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
auto fieldInfo = childMetadata(i, outName, outFreeFunc);
auto *bytes = *reinterpret_cast<char * const *>(value);
auto fieldOffset = childOffset(i);
auto *fieldData = reinterpret_cast<OpaqueValue *>(bytes + fieldOffset);
return copyFieldContents(fieldData, fieldInfo);
}
#if SWIFT_OBJC_INTEROP
id quickLookObject() override {
return _quickLookObjectForPointer(value);
}
#endif
};
#if SWIFT_OBJC_INTEROP
// Implementation for ObjC classes.
struct ObjCClassImpl : ClassImpl {
intptr_t count() override {
// ObjC makes no guarantees about the state of ivars, so we can't safely
// introspect them in the general case.
return 0;
}
intptr_t childOffset(intptr_t i) override {
swift::crash("Cannot get children of Objective-C objects.");
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Cannot get children of Objective-C objects.");
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Cannot get children of Objective-C objects.");
}
virtual intptr_t recursiveCount() override { return 0; }
virtual intptr_t recursiveChildOffset(intptr_t index) override {
swift::crash("Cannot get children of Objective-C objects.");
}
virtual const FieldType
recursiveChildMetadata(intptr_t index, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Cannot get children of Objective-C objects.");
}
};
#endif
// Implementation for metatypes.
struct MetatypeImpl : ReflectionMirrorImpl {
char displayStyle() override {
return '\0';
}
intptr_t count() override {
return 0;
}
intptr_t childOffset(intptr_t i) override {
swift::crash("Metatypes have no children.");
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Metatypes have no children.");
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Metatypes have no children.");
}
};
// Implementation for opaque types.
struct OpaqueImpl : ReflectionMirrorImpl {
char displayStyle() override {
return '\0';
}
intptr_t count() override {
return 0;
}
intptr_t childOffset(intptr_t i) override {
swift::crash("Opaque types have no children.");
}
const FieldType childMetadata(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Opaque types have no children.");
}
AnyReturn subscript(intptr_t i, const char **outName,
void (**outFreeFunc)(const char *)) override {
swift::crash("Opaque types have no children.");
}
};
template<typename F>
auto call(OpaqueValue *passedValue, const Metadata *T, const Metadata *passedType,
const F &f) -> decltype(f(nullptr))
{
const Metadata *type;
OpaqueValue *value;
std::tie(type, value) = unwrapExistential(T, passedValue);
if (passedType != nullptr) {
type = passedType;
}
auto call = [&](ReflectionMirrorImpl *impl) {
impl->type = type;
impl->value = value;
auto result = f(impl);
return result;
};
auto callClass = [&] {
if (passedType == nullptr) {
// Get the runtime type of the object.
const void *obj = *reinterpret_cast<const void * const *>(value);
auto isa = _swift_getClass(obj);
// Look through artificial subclasses.
while (isa->isTypeMetadata() && isa->isArtificialSubclass()) {
isa = isa->Superclass;
}
passedType = isa;
}
#if SWIFT_OBJC_INTEROP
// If this is a pure ObjC class, reflect it using ObjC's runtime facilities.
// ForeignClass (e.g. CF classes) manifests as a NULL class object.
auto *classObject = passedType->getClassObject();
if (classObject == nullptr || !classObject->isTypeMetadata()) {
ObjCClassImpl impl;
return call(&impl);
}
#endif
// Otherwise, use the native Swift facilities.
ClassImpl impl;
return call(&impl);
};
switch (type->getKind()) {
case MetadataKind::Tuple: {
TupleImpl impl;
return call(&impl);
}
case MetadataKind::ForeignReferenceType: {
ForeignReferenceTypeImpl impl;
return call(&impl);
}
case MetadataKind::Struct: {
StructImpl impl;
return call(&impl);
}
case MetadataKind::Enum:
case MetadataKind::Optional: {
EnumImpl impl;
return call(&impl);
}
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::Class: {
return callClass();
}
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype: {
MetatypeImpl impl;
return call(&impl);
}
case MetadataKind::Opaque: {
#if SWIFT_OBJC_INTEROP
// If this is the AnyObject type, use the dynamic type of the
// object reference.
if (type == &METADATA_SYM(BO).base) {
return callClass();
}
#endif
// If this is the Builtin.NativeObject type, and the heap object is a
// class instance, use the dynamic type of the object reference.
if (type == &METADATA_SYM(Bo).base) {
const HeapObject *obj
= *reinterpret_cast<const HeapObject * const*>(value);
if (obj->metadata->getKind() == MetadataKind::Class) {
return callClass();