-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_movielens_deepfm.py
218 lines (160 loc) · 8.25 KB
/
train_movielens_deepfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import pandas as pd
import torch
import random
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
from deepctr_torch.callbacks import EarlyStopping, ModelCheckpoint
from preprocessing.inputs import SparseFeat, DenseFeat, VarLenSparseFeat
from preprocessing.inputs import SparseFeat, DenseFeat, get_feature_names
from model.deepfm import DeepFM
from model.dcn import DCN
from model.cold import Cold
from model.autoint import AutoInt
from model.wdm import WideDeep
from torchsummary import summary
def data_process(data_path, samp_rows=100000):
data = pd.read_csv(data_path)
data = data.drop(data[data['rating'] == 3].index)
data['rating'] = data['rating'].apply(lambda x: 1 if x > 3 else 0)
data = data.sort_values(by='timestamp', ascending=True)
train,test = train_test_split(data,test_size= 0.2 )
return train, test, data
def get_user_feature(data):
data_group = data[data['rating'] == 1]
data_group = data_group[['user_id', 'movie_id']].groupby('user_id').agg(list).reset_index()
data_group['user_hist'] = data_group['movie_id'].apply(lambda x: '|'.join([str(i) for i in x]))
data = pd.merge(data_group.drop('movie_id', axis=1), data, on='user_id')
data_group = data[['user_id', 'rating']].groupby('user_id').agg('mean').reset_index()
data_group.rename(columns={'rating': 'user_mean_rating'}, inplace=True)
data = pd.merge(data_group, data, on='user_id')
return data
def get_item_feature(data):
data_group = data[['movie_id', 'rating']].groupby('movie_id').agg('mean').reset_index()
data_group.rename(columns={'rating': 'item_mean_rating'}, inplace=True)
data = pd.merge(data_group, data, on='movie_id')
return data
def get_var_feature(data, col):
key2index = {}
def split(x):
key_ans = x.split('|')
for key in key_ans:
if key not in key2index:
# Notice : input value 0 is a special "padding",\
# so we do not use 0 to encode valid feature for sequence input
key2index[key] = len(key2index) + 1
return list(map(lambda x: key2index[x], key_ans))
var_feature = list(map(split, data[col].values))
var_feature_length = np.array(list(map(len, var_feature)))
max_len = max(var_feature_length)
var_feature = pad_sequences(var_feature, maxlen=max_len, padding='post', )
return key2index, var_feature, max_len
def get_test_var_feature(data, col, key2index, max_len):
print("user_hist_list: \n")
def split(x):
key_ans = x.split('|')
for key in key_ans:
if key not in key2index:
# Notice : input value 0 is a special "padding",
# so we do not use 0 to encode valid feature for sequence input
key2index[key] = len(key2index) + 1
return list(map(lambda x: key2index[x], key_ans))
test_hist = list(map(split, data[col].values))
test_hist = pad_sequences(test_hist, maxlen=max_len, padding='post')
return test_hist
def print_model_parm_nums(model):
total = sum([param.nelement() for param in model.parameters()])
print(' + Number of params: %.2fM' % (total / 1e6))
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
# 1.load data
print("1")
embedding_dim = 32
epoch = 10
batch_size = 2048
seed = 1023
setup_seed(1023)
lr = 0.001
dropout = 0.1
data_path = './data/movielens.txt'
train,test,data = data_process(data_path)
train = get_user_feature(train)
train = get_item_feature(train)
test = get_user_feature(test)
test = get_item_feature(test)
sparse_features = ['user_id', 'movie_id', 'gender', 'age', 'occupation']
dense_features = ['user_mean_rating', 'item_mean_rating']
target = ['rating']
user_sparse_features, user_dense_features = ['user_id', 'gender', 'age', 'occupation'], ['user_mean_rating']
item_sparse_features, item_dense_features = ['movie_id', ], ['item_mean_rating']
# 1.Label Encoding for sparse features,and process sequence features
for feat in sparse_features:
lbe = LabelEncoder()
lbe.fit(data[feat])
train[feat] = lbe.transform(train[feat])
test[feat] = lbe.transform(test[feat])
mms = MinMaxScaler(feature_range=(0, 1))
mms.fit(train[dense_features])
mms.fit(test[dense_features])
train[dense_features] = mms.transform(train[dense_features])
test[dense_features] = mms.transform(test[dense_features])
# 2.preprocess the sequence feature
genres_key2index, train_genres_list, genres_maxlen = get_var_feature(train, 'genres')
user_key2index, train_user_hist, user_maxlen = get_var_feature(train, 'user_hist')
sparse_feature_columns = [SparseFeat(feat, data[feat].nunique(), embedding_dim=embedding_dim)
for i, feat in enumerate(sparse_features)]
dense_feature_columns = [DenseFeat(feat, 1, ) for feat in dense_features]
item_varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_size=1000, embedding_dim=32),
maxlen=genres_maxlen, combiner='mean', length_name=None)]
user_varlen_feature_columns = [VarLenSparseFeat(SparseFeat('user_hist', vocabulary_size=4000, embedding_dim=32),
maxlen=user_maxlen, combiner='mean', length_name=None)]
# 3.generate input data for model
# sparse_feature_columns += user_varlen_feature_columns
sparse_feature_columns += item_varlen_feature_columns
linear_feature_columns = sparse_feature_columns + dense_feature_columns
dnn_feature_columns = sparse_feature_columns + dense_feature_columns
# add user history as user_varlen_feature_columns
train_model_input = {name: train[name] for name in sparse_features + dense_features}
train_model_input["genres"] = train_genres_list
# train_model_input["user_hist"] = train_user_hist
# print(train_model_input)
# %%
# 4.Define Model,train,predict and evaluate
device = 'cpu'
use_cuda = True
if use_cuda and torch.cuda.is_available():
print('cuda ready...')
device = 'cuda:0'
es = EarlyStopping(monitor='val_auc', min_delta=0, verbose=1,
patience=3, mode='max', baseline=None)
mdckpt = ModelCheckpoint(filepath='wide_model.ckpt', monitor='val_auc',
mode='max', verbose=1, save_best_only=True, save_weights_only=True)
# If you want to try another model such as "autoint", just replace the model name directly
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary', dnn_dropout=dropout,
device=device)
model.compile("adam", "binary_crossentropy", metrics=['auc', 'accuracy', 'logloss']
, lr=lr)
model.fit(train_model_input, train[target].values, batch_size= batch_size, epochs=epoch, verbose=2, validation_split=0.2,
callbacks=[es, mdckpt])
model.load_state_dict(torch.load('wide_model.ckpt'))
# 测试时不启用 BatchNormalization 和 Dropout
model.eval()
test_genres_list = get_test_var_feature(test, 'genres', genres_key2index, genres_maxlen)
# test_user_hist = get_test_var_feature(test, 'user_hist', user_key2index, user_maxlen)
test_model_input = {name: test[name] for name in sparse_features + dense_features}
# train_model_input["genres"] = train_genres_list
test_model_input["genres"] = test_genres_list
# test_model_input["user_hist"] = test_user_hist
# %%
pred_ts = model.predict(test_model_input, batch_size=2048)
# %%
print("test LogLoss", round(log_loss(test[target].values, pred_ts), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ts), 4))