-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge-scdb-courtlistener.py
197 lines (174 loc) · 10.2 KB
/
merge-scdb-courtlistener.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
import datetime
import json
import os
import re
import tarfile
import tempfile
import pandas as pd
DATA_DIR = os.path.join(os.path.dirname(__name__), 'data')
SCDB_FILENAME = os.path.join(DATA_DIR, 'SCDB_2014_01_caseCentered_Citation.csv')
# only match cases between these terms (inclusive)
SCDB_TERM_BEGIN = 1950
SCDB_TERM_END = 2008
SCDB_DECISION_TYPES = {1, 2, 5, 6, 7}
# citation regular expressions
us_cite_re = re.compile(r'^[0-9]{1,3} U\.S\. [0-9]{1,4}')
assert us_cite_re.match('342 U.S. 76')
assert us_cite_re.match('37 U.S. 1189')
sct_cite_re = re.compile(r'^[0-9]{1,4} S\. Ct\. [0-9]{1,4}')
assert sct_cite_re.match('127 S. Ct. 2301')
# load SCDB to double check all cases are present
scdb = pd.read_csv(SCDB_FILENAME, index_col='caseId', encoding='latin1')
scdb = scdb[(scdb.term >= SCDB_TERM_BEGIN) & (scdb.term <= SCDB_TERM_END)]
# Limit our cases of interest to the following decisionTypes
# See http://scdb.wustl.edu/documentation.php?var=decisionType
# 1: opinion of the court (orally argued)
# 2: per curiam (no oral argument)
# 5: equally divided vote
# 6: per curiam (orally argued)
# 7: judgment of the Court (orally argued)
scdb = scdb[scdb.decisionType.isin(SCDB_DECISION_TYPES)]
# we will use dateDecision, so we need to parse it
scdb['dateDecision'] = pd.to_datetime(scdb['dateDecision'], format='%m/%d/%Y')
assert scdb.index.is_unique
# Build flat dataset of CourtListener documents to facilitate document id lookups
courtlistener_records = []
with tarfile.open(os.path.join(DATA_DIR, 'scotus.tar.gz')) as tar:
for tarinfo in tar:
f = tar.extractfile(tarinfo)
record = json.loads(f.read().decode('utf8'))
date_filed = datetime.datetime.strptime(record['date_filed'], "%Y-%m-%d")
# ignore cases that are chronologically distant from our time frame
if date_filed.year < scdb.term.min() - 1 or date_filed.year > scdb.term.max() + 1:
continue
document_id = int(record['id'])
citation_count = int(record['citation_count'])
document_uris = tuple(record['citation']['document_uris'])
docket_number = str(record['citation']['docket_number'])
case_name = str(record['citation']['case_name'])
us_citations = set(v.strip() for v in record['citation'].values() if isinstance(v, str) and us_cite_re.match(v.strip()))
if len(us_citations) == 0:
us_citations.add(float('nan'))
elif len(us_citations) > 1:
print(record['citation'])
raise ValueError("Found more than one US Reports citation for {}".format(document_id))
sct_citations = set(v for v in record['citation'].values() if isinstance(v, str) and sct_cite_re.match(v))
if len(sct_citations) == 0:
sct_citations.add(float('nan'))
elif len(sct_citations) > 1:
print(record['citation'])
raise ValueError("Found more than one Supreme Court Reporter citation for {}".format(document_id))
courtlistener_records.append((document_id, date_filed, docket_number, us_citations.pop(), sct_citations.pop(), case_name, citation_count, document_uris))
courtlistener = pd.DataFrame.from_records(
courtlistener_records,
columns=['document_id', 'date_filed', 'docket_number', 'us_cite', 'sct_cite', 'case_name', 'citation_count', 'document_uris']
).set_index('document_id')
assert courtlistener.index.is_unique
############################################################################
# Incrementally merge the two datasets
############################################################################
print("Goal is to match {} opinions in the SCDB".format(len(scdb)))
# to find matches incrementally create copies of datasets and remove entries as matches are found
scdb_unmerged = scdb.copy()
cl_unmerged = courtlistener.copy()
partial_merges = []
# harmonize format of CourtListener's `docket_number` to SCDB's `docket`
cl_unmerged['docket_number'] = [dn.replace(', Original', ' ORIG') for dn in cl_unmerged['docket_number']]
cl_unmerged['docket_number'] = [dn.replace('___, ORIGINAL', 'ORIG') for dn in cl_unmerged['docket_number']]
cl_unmerged['docket_number'] = [dn.replace(', Orig', ' ORIG') for dn in cl_unmerged['docket_number']]
cl_unmerged['docket_number'] = [dn.replace(', Misc', ' M') for dn in cl_unmerged['docket_number']]
cl_unmerged['docket_number'] = [dn.replace(' Misc', ' M') for dn in cl_unmerged['docket_number']]
cl_unmerged['docket_number'] = [dn.replace('NO. ', '') for dn in cl_unmerged['docket_number']]
cl_unmerged.loc[107757, 'docket_number'] = '1133' # was '1133, October Term, 1967'
cl_unmerged.loc[109805, 'docket_number'] = '77-88' # was "Nos. 77-88, 77-126"
cl_unmerged.loc[145898, 'docket_number'] = '105 ORIG' # was '105 ORIG.'
cl_unmerged.loc[2510329, 'docket_number'] = '6' # was "NOS. 6 AND 11"
# manually provide a US Reports citation for CourtListener cases where it is missing
cl_unmerged.loc[145898, 'us_cite'] = '556 U.S. 98' # Kansas v. Colorado
# fix minor idiosyncrasies in SCDB `docket`
scdb_unmerged.loc['1951-018', 'docket'] = '71 M' # was "71M"
scdb_unmerged.loc['2008-033', 'docket'] = '105 ORIG' # was '105, Orig.'
scdb_unmerged.loc['1953-054', 'docket'] = scdb_unmerged.loc['1953-054', 'docket'].strip() # whitespace
assert sum(scdb_unmerged['docket'].isnull()) < 10
scdb_unmerged['docket'] = scdb_unmerged['docket'].fillna('___') # matches "___" used in CourtListener
# where CourtListener has multiple entries with same docket number and US Reports citation, use document
# with highest `citation_count`.
assert sum(cl_unmerged[['us_cite', 'docket_number']].duplicated()) < 400
cl_unmerged = cl_unmerged.sort('citation_count', ascending=False).drop_duplicates(['us_cite', 'docket_number'])
# helper function to grab unambiguous matches
def merge_unambiguous(df1, df2, left_on, right_on):
"""Return matching indexes where an unambigious match from df1 -> df2 is found."""
if not (df1.index.is_unique and df2.index.is_unique):
raise ValueError("Both datasets must have unique indexes")
df1_index_name = df1.index.name
df2_index_name = df2.index.name
merged = pd.merge(df1.reset_index(), df2.reset_index(), left_on=left_on, right_on=right_on, how='inner')
# drop records where a unique match was not found
merged_nonunique = merged[merged[df1_index_name].duplicated()]
merged = merged[~merged[df1_index_name].isin(merged_nonunique[df1_index_name])]
merged = merged[[df1_index_name, df2_index_name]]
if not (merged.set_index(df1_index_name).index.is_unique and
merged.set_index(df2_index_name).index.is_unique):
raise ValueError("Unable to unambiguously match records in datasets.")
return merged
# match on US Reports citation AND docket number
merged = merge_unambiguous(scdb_unmerged, cl_unmerged, ['usCite', 'docket'], ['us_cite', 'docket_number'])
partial_merges.append(merged)
# remove records from SCDB and CourtListener where we have a match
scdb_unmerged.drop(merged['caseId'], inplace=True)
cl_unmerged.drop(merged['document_id'], inplace=True)
print("Merged {} opinions, {} remain".format(len(scdb) - len(scdb_unmerged), len(scdb_unmerged)))
# match on Supreme Court Reporter citation AND docket number
merged = merge_unambiguous(scdb_unmerged, cl_unmerged, ['sctCite', 'docket'], ['sct_cite', 'docket_number'])
partial_merges.append(merged)
# remove records from SCDB and CourtListener where we have a match
scdb_unmerged.drop(merged['caseId'], inplace=True)
cl_unmerged.drop(merged['document_id'], inplace=True)
print("Merged {} opinions, {} remain".format(len(scdb) - len(scdb_unmerged), len(scdb_unmerged)))
# match on US Reports citation alone
merged = merge_unambiguous(scdb_unmerged, cl_unmerged, ['usCite'], ['us_cite'])
partial_merges.append(merged)
# remove records from SCDB and CourtListener where we have a match
scdb_unmerged.drop(merged['caseId'], inplace=True)
cl_unmerged.drop(merged['document_id'], inplace=True)
print("Merged {} opinions, {} remain".format(len(scdb) - len(scdb_unmerged), len(scdb_unmerged)))
# match on Supreme Court Reporter citation alone
merged = merge_unambiguous(scdb_unmerged, cl_unmerged, ['sctCite'], ['sct_cite'])
partial_merges.append(merged)
# remove records from SCDB and CourtListener where we have a match
scdb_unmerged.drop(merged['caseId'], inplace=True)
cl_unmerged.drop(merged['document_id'], inplace=True)
print("Merged {} opinions, {} remain".format(len(scdb) - len(scdb_unmerged), len(scdb_unmerged)))
# match on decision date/filing date and docket number
merged = merge_unambiguous(scdb_unmerged, cl_unmerged, ['dateDecision', 'docket'], ['date_filed', 'docket_number'])
partial_merges.append(merged)
# remove records from SCDB and CourtListener where we have a match
scdb_unmerged.drop(merged['caseId'], inplace=True)
cl_unmerged.drop(merged['document_id'], inplace=True)
print("Merged {} opinions, {} remain".format(len(scdb) - len(scdb_unmerged), len(scdb_unmerged)))
# save results to disk
scdb_unmerged_fn = os.path.join(tempfile.gettempdir(), 'scdb-unmerged.csv')
print("{} SCDB records have no matches in CourtListener, saving them to {}".format(len(scdb_unmerged), scdb_unmerged_fn))
scdb_unmerged.to_csv(scdb_unmerged_fn)
df = pd.concat(partial_merges)
assert df.set_index('caseId').index.is_unique
assert df.set_index('document_id').index.is_unique
# recover document ids where the opinion spans more than one document,
# in these rare cases one row from the SCDB needs to match multiple document ids
cl_multi = courtlistener.loc[df.document_id]
cl_multi = cl_multi[cl_multi.document_uris.apply(len) > 1]
cl_multi = cl_multi.join(df.set_index('document_id'))
# add new records to df via expansion (needs recent verison of pandas)
df = df.set_index('document_id')
for document_id, record in cl_multi[['caseId', 'document_uris']].iterrows():
document_ids = {int(re.search(r'/([0-9]+)/', uri).groups()[0]) for uri in record['document_uris']}
document_ids -= {document_id}
for i in document_ids:
df.loc[i] = record['caseId']
# for some reason, the index name gets lost
df.index.name = 'document_id'
df = df.reset_index().set_index('caseId').sort(axis=0)
scdb_courtlistener_fn = os.path.join(tempfile.gettempdir(), 'scdb-courtlistener.csv')
print("{} SCDB records have unique matches in CourtListener, saving them to {}".format(len(scdb) - len(scdb_unmerged), scdb_courtlistener_fn))
df.to_csv(scdb_courtlistener_fn)