Skip to content
This repository has been archived by the owner on Jan 8, 2025. It is now read-only.

Latest commit

 

History

History
114 lines (86 loc) · 3.2 KB

README.md

File metadata and controls

114 lines (86 loc) · 3.2 KB

Hadoop playground

Yet another Hadoop playground (HDP v2.6.4)

Requirements

  • OS: Linux x86_64
  • RAM: 16GB+
  • CPU cores: 8+
  • HDD: best results with SSD
  • docker >= 18.03.1-ce
  • docker-compose >= 1.21.0

Configuration

Cluster is already pre-configured.

Booting up

Add following records to /etc/hosts on host machine:

10.5.0.11 namenode1 namenode1.cluster.local
10.5.0.12 namenode2 namenode2.cluster.local
10.5.0.21 datanode1 datanode1.cluster.local
10.5.0.22 datanode2 datanode2.cluster.local
10.5.0.23 datanode3 datanode3.cluster.local

Build and boot up:

$ docker-compose build
$ docker-compose up

Depending on CPU/RAM/SSD, cluster initialization could take some time.

Cluster Layout

NameNode namenode1.cluster.local
ssh
zookeeper
namenode HDFS
resourcemanager Yarn
hbase-master HBase
hbase-thrift HBase Thrift API
SecondaryNameNode namenode2.cluster.local
ssh
zookeeper
secondarynamenode HDFS
resourcemanager Yarn
hbase-master HBase
DataNodes (1..3) datanodeX.cluster.local
ssh
zookeeper
datanode HDFS
nodemanager Yarn
hbase-regionserver HBase

Command line interface

There are pre-configured command line console, run ./console and type some Hadoop commands. To reach any other cluster node, use ssh.

Validation

Check HDFS and Yarn reports:

$ hdfs dfsadmin -report
$ yarn node -list -all

Check HBase status:

$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.1.2.2.6.4.0-91, r2a88e694af7238290a5747f963a4fa0079c55bf9, Thu Jan  4 10:42:39 UTC 2018
 
hbase(main):001:0> status
1 active master, 1 backup masters, 3 servers, 0 dead, 0.6667 average load

Submit sample MapReduce job:

$ yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar pi 16 1000
Number of Maps  = 16
Samples per Map = 1000
Wrote input for Map #0
...
Wrote input for Map #15
Starting Job
Job Finished in 32.566 seconds
Estimated value of Pi is 3.14250000000000000000

Useful endpoints

Python examples