-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathmodel.py
129 lines (102 loc) · 4.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# encoding: utf-8
"""
The main CheXNet model implementation.
"""
import os
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from read_data import ChestXrayDataSet
from sklearn.metrics import roc_auc_score
CKPT_PATH = 'model.pth.tar'
N_CLASSES = 14
CLASS_NAMES = [ 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia',
'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural_Thickening', 'Hernia']
DATA_DIR = './ChestX-ray14/images'
TEST_IMAGE_LIST = './ChestX-ray14/labels/test_list.txt'
BATCH_SIZE = 64
def main():
cudnn.benchmark = True
# initialize and load the model
model = DenseNet121(N_CLASSES).cuda()
model = torch.nn.DataParallel(model).cuda()
if os.path.isfile(CKPT_PATH):
print("=> loading checkpoint")
checkpoint = torch.load(CKPT_PATH)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint")
else:
print("=> no checkpoint found")
normalize = transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
test_dataset = ChestXrayDataSet(data_dir=DATA_DIR,
image_list_file=TEST_IMAGE_LIST,
transform=transforms.Compose([
transforms.Resize(256),
transforms.TenCrop(224),
transforms.Lambda
(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda
(lambda crops: torch.stack([normalize(crop) for crop in crops]))
]))
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE,
shuffle=False, num_workers=8, pin_memory=True)
# initialize the ground truth and output tensor
gt = torch.FloatTensor()
gt = gt.cuda()
pred = torch.FloatTensor()
pred = pred.cuda()
# switch to evaluate mode
model.eval()
for i, (inp, target) in enumerate(test_loader):
target = target.cuda()
gt = torch.cat((gt, target), 0)
bs, n_crops, c, h, w = inp.size()
input_var = torch.autograd.Variable(inp.view(-1, c, h, w).cuda(), volatile=True)
output = model(input_var)
output_mean = output.view(bs, n_crops, -1).mean(1)
pred = torch.cat((pred, output_mean.data), 0)
AUROCs = compute_AUCs(gt, pred)
AUROC_avg = np.array(AUROCs).mean()
print('The average AUROC is {AUROC_avg:.3f}'.format(AUROC_avg=AUROC_avg))
for i in range(N_CLASSES):
print('The AUROC of {} is {}'.format(CLASS_NAMES[i], AUROCs[i]))
def compute_AUCs(gt, pred):
"""Computes Area Under the Curve (AUC) from prediction scores.
Args:
gt: Pytorch tensor on GPU, shape = [n_samples, n_classes]
true binary labels.
pred: Pytorch tensor on GPU, shape = [n_samples, n_classes]
can either be probability estimates of the positive class,
confidence values, or binary decisions.
Returns:
List of AUROCs of all classes.
"""
AUROCs = []
gt_np = gt.cpu().numpy()
pred_np = pred.cpu().numpy()
for i in range(N_CLASSES):
AUROCs.append(roc_auc_score(gt_np[:, i], pred_np[:, i]))
return AUROCs
class DenseNet121(nn.Module):
"""Model modified.
The architecture of our model is the same as standard DenseNet121
except the classifier layer which has an additional sigmoid function.
"""
def __init__(self, out_size):
super(DenseNet121, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, out_size),
nn.Sigmoid()
)
def forward(self, x):
x = self.densenet121(x)
return x
if __name__ == '__main__':
main()