-
Notifications
You must be signed in to change notification settings - Fork 42
/
demo_se2.cpp
401 lines (305 loc) · 12.1 KB
/
demo_se2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/**
* \file demo_se2.cpp
*
* Created on: Feb 5, 2021
* \author: artivis
*
* ---------------------------------------------------------
* This file is:
* (c) 2021 artivis
*
* This file is part of `kalmanif`, a C++ template-only library
* for Kalman filtering on Lie groups targeted at estimation for robotics.
* kalmanif is:
* (c) 2015 mherb
* (c) 2021 artivis
* ---------------------------------------------------------
*
* ---------------------------------------------------------
* Demonstration example:
*
* 2D Robot localization based on fixed beacons.
*
* See demo_se3.cpp for the 3D equivalent.
* ---------------------------------------------------------
*
* This demo corresponds to the application in chapter V, section A,
* in the paper Sola-18, [https://arxiv.org/abs/1812.01537].
*
* The following is an abstract of the content of the paper.
* Please consult the paper for better reference.
*
*
* We consider a robot in the plane surrounded by a small
* number of punctual landmarks or _beacons_.
* The robot receives control actions in the form of axial
* and angular velocities, and is able to measure the location
* of the beacons w.r.t its own reference frame.
*
* The robot pose X is in SE(2) and the beacon positions b_k in R^2,
*
* | cos th -sin th x |
* X = | sin th cos th y | // position and orientation
* | 0 0 1 |
*
* b_k = (bx_k, by_k) // lmk coordinates in world frame
*
* The control signal u is a twist in se(2) comprising longitudinal
* velocity v and angular velocity w, with no lateral velocity
* component, integrated over the sampling time dt.
*
* u = (v*dt, 0, w*dt)
*
* The control is corrupted by additive Gaussian noise u_noise,
* with covariance
*
* Q = diagonal(sigma_v^2, sigma_s^2, sigma_w^2).
*
* This noise accounts for possible lateral slippage u_s
* through a non-zero value of sigma_s,
*
* At the arrival of a control u, the robot pose is updated
* with X <-- X * Exp(u) = X + u.
*
* Landmark measurements are of the range and bearing type,
* though they are put in Cartesian form for simplicity.
* Their noise n is zero mean Gaussian, and is specified
* with a covariances matrix R.
* We notice the rigid motion action y = h(X,b) = X^-1 * b
* (see appendix C),
*
* y_k = (brx_k, bry_k) // lmk coordinates in robot frame
*
* We consider the beacons b_k situated at known positions.
* We define the pose to estimate as X in SE(2).
* The estimation error dx and its covariance P are expressed
* in the tangent space at X.
*
* All these variables are summarized again as follows
*
* X : robot pose, SE(2)
* u : robot control, (v*dt ; 0 ; w*dt) in se(2)
* Q : control perturbation covariance
* b_k : k-th landmark position, R^2
* y : Cartesian landmark measurement in robot frame, R^2
* R : covariance of the measurement noise
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( w ) // motion equation
* y_k = h(X, b_k) = X^-1 * b_k // measurement equation
*
* The algorithm below comprises first a simulator to
* produce measurements, then uses these measurements
* to estimate the state, using several Kalman filter available
* in the library.
*
* Printing simulated state and estimated state together
* with an unfiltered state (i.e. without Kalman corrections)
* allows for evaluating the quality of the estimates.
*/
#include <kalmanif/kalmanif.h>
#include "utils/rand.h"
#include "utils/plots.h"
#include "utils/utils.h"
#include <manif/SE2.h>
#include <vector>
using namespace kalmanif;
using namespace manif;
using State = SE2d;
using StateCovariance = Covariance<State>;
using SystemModel = LieSystemModel<State>;
using Control = SystemModel::Control;
using MeasurementModel = Landmark2DMeasurementModel<State>;
using Landmark = MeasurementModel::Landmark;
using Measurement = MeasurementModel::Measurement;
// Filters
using EKF = ExtendedKalmanFilter<State>;
using SEKF = SquareRootExtendedKalmanFilter<State>;
using IEKF = InvariantExtendedKalmanFilter<State>;
using UKFM = UnscentedKalmanFilterManifolds<State>;
// Smoothers
using ERTS = RauchTungStriebelSmoother<EKF>;
using SERTS = RauchTungStriebelSmoother<SEKF>;
using IERTS = RauchTungStriebelSmoother<IEKF>;
using URTSM = RauchTungStriebelSmoother<UKFM>;
int main (int argc, char* argv[]) {
KALMANIF_DEMO_PROCESS_INPUT(argc, argv);
KALMANIF_DEMO_PRETTY_PRINT();
// START CONFIGURATION
constexpr double eot = 30; // s
constexpr double dt = 0.01; // s
double sqrtdt = std::sqrt(dt);
constexpr double var_gyro = 1e-3; // (rad/s)^2
constexpr double var_wheel_odometry = 9e-5; // (m/s)^2
constexpr double var_gps = 6e-3;
constexpr int gps_freq = 10; // Hz
constexpr int landmark_freq = 50; // Hz
(void)landmark_freq;
(void)gps_freq;
State X_simulation = State::Identity(),
X_unfiltered = State::Identity(); // propagation only, for comparison purposes
// Define a control vector and its noise and covariance
Control u_simu, u_est, u_unfilt;
Eigen::Vector3d u_nom, u_nom_simu, u_noisy, u_noise;
Eigen::Array3d u_sigmas;
Eigen::Matrix3d U;
u_nom << 0, 0, 0;
u_sigmas << std::sqrt(var_wheel_odometry), std::sqrt(var_wheel_odometry), std::sqrt(var_gyro);
U = (u_sigmas * u_sigmas * 1./dt).matrix().asDiagonal();
// Define the beacon's measurements
Eigen::Vector2d y, y_noise;
Eigen::Array2d y_sigmas;
Eigen::Matrix2d R;
y_sigmas << 0.01, 0.01;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();
std::vector<MeasurementModel> measurement_models = {
MeasurementModel(Landmark(2.0, 0.0), R),
MeasurementModel(Landmark(2.0, 1.0), R),
MeasurementModel(Landmark(2.0, -1.0), R)
};
// Define the gps measurements
Eigen::Vector2d y_gps, y_gps_noise;
Eigen::Array2d y_gps_sigmas;
Eigen::Matrix2d R_gps;
y_gps_sigmas << std::sqrt(var_gps), std::sqrt(var_gps);
R_gps = (y_sigmas * y_sigmas).matrix().asDiagonal();
std::vector<Measurement> measurements(measurement_models.size());
SystemModel system_model;
system_model.setCovariance(U);
StateCovariance state_cov_init = StateCovariance::Zero();
state_cov_init(0, 0) = 1;
state_cov_init(1, 1) = 1;
state_cov_init(2, 2) = MANIF_PI_4;
Eigen::Vector3d n = randn<Eigen::Array3d>();
Eigen::Vector3d X_init_coeffs = state_cov_init.cwiseSqrt() * n;
State X_init(X_init_coeffs(0), X_init_coeffs(1), X_init_coeffs(2));
// X_unfiltered = X_init;
EKF ekf;
ekf.setState(X_init);
ekf.setCovariance(state_cov_init);
SEKF sekf(X_init, state_cov_init);
IEKF iekf(X_init, state_cov_init);
UKFM ukfm(X_init, state_cov_init);
ERTS erts(X_init, state_cov_init);
SERTS serts(X_init, state_cov_init);
IERTS ierts(X_init, state_cov_init);
URTSM urtsm(X_init, state_cov_init);
// Store some data for plots
DemoDataCollector<State> collector;
collector.reserve(
eot/dt, "UNFI", "EKF", "SEKF", "IEKF", "UKFM", "ERTS", "SERTS", "IERTS", "URTSM"
);
// Make T steps. Measure up to K landmarks each time.
for (double t = 0; t < eot; t += dt) {
//// I. Simulation
/// simulate noise
u_noise = randn<Eigen::Array3d>(u_sigmas / sqrtdt); // control noise
u_noisy = u_nom + u_noise; // noisy control
u_simu = u_nom * dt;
u_est = u_noisy * dt;
u_unfilt = u_noisy * dt;
/// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_simulation = system_model(X_simulation, u_simu);
/// then we measure all landmarks - - - - - - - - - - - - - - - - - - - -
for (std::size_t i = 0; i < measurement_models.size(); ++i) {
auto measurement_model = measurement_models[i];
y = measurement_model(X_simulation); // landmark measurement, before adding noise
/// simulate noise
y_noise = randn(y_sigmas); // measurement noise
y = y + y_noise; // landmark measurement, noisy
measurements[i] = y; // store for the estimator just below
}
//// II. Estimation
/// First we move
ekf.propagate(system_model, u_est);
sekf.propagate(system_model, u_est);
iekf.propagate(system_model, u_est, dt);
ukfm.propagate(system_model, u_est);
erts.propagate(system_model, u_est);
serts.propagate(system_model, u_est);
ierts.propagate(system_model, u_est, dt);
urtsm.propagate(system_model, u_est);
X_unfiltered = system_model(X_unfiltered, u_unfilt);
/// Then we correct using the measurements of each lmk
// if (int(t*100) % int(100./landmark_freq) == 0) {
// for (std::size_t i = 0; i < measurement_models.size(); ++i) {
// // landmark
// auto measurement_model = measurement_models[i];
// // measurement
// y = measurements[i];
// // filter update
// ekf.update(measurement_model, y);
// sekf.update(measurement_model, y);
// iekf.update(measurement_model, y);
// ukfm.update(measurement_model, y);
// erts.update(measurement_model, y);
// serts.update(measurement_model, y);
// ierts.update(measurement_model, y);
// urtsm.update(measurement_model, y);
// }
// }
// // GPS measurement update
// if (int(t*100) % int(100./gps_freq) == 0) {
// gps measurement model
auto gps_measurement_model = DummyGPSMeasurementModel<State>(R_gps);
y_gps = gps_measurement_model(X_simulation); // gps measurement, before adding noise
/// simulate noise
y_gps_noise = randn(y_gps_sigmas); // measurement noise
y_gps = y_gps + y_gps_noise; // gps measurement, noisy
// filter update
ekf.update(gps_measurement_model, y_gps);
sekf.update(gps_measurement_model, y_gps);
iekf.update(gps_measurement_model, y_gps);
ukfm.update(gps_measurement_model, y_gps);
erts.update(gps_measurement_model, y_gps);
serts.update(gps_measurement_model, y_gps);
ierts.update(gps_measurement_model, y_gps);
urtsm.update(gps_measurement_model, y_gps);
// }
//// III. Next iteration
u_nom << 0.1 * std::cos(t) + 10.0,
0.0,
std::exp(-0.03 * (t)) * std::cos(t);
//// IV. Results
collector.collect(X_simulation, t);
collector.collect("UNFI", X_unfiltered, StateCovariance::Zero(), t);
collector.collect("EKF", ekf.getState(), ekf.getCovariance(), t);
collector.collect("SEKF", sekf.getState(), sekf.getCovariance(), t);
collector.collect("IEKF", iekf.getState(), iekf.getCovariance(), t);
collector.collect("UKFM", ukfm.getState(), ukfm.getCovariance(), t);
}
// END OF TEMPORAL LOOP, forward pass
// Batch backward pass - smoothing
{
erts.smooth();
const auto& Xs_erts = erts.getStates();
const auto& Ps_erts = erts.getCovariances();
serts.smooth();
const auto& Xs_serts = serts.getStates();
const auto& Ps_serts = serts.getCovariances();
ierts.smooth();
const auto& Xs_ierts = ierts.getStates();
const auto& Ps_ierts = ierts.getCovariances();
urtsm.smooth();
const auto& Xs_urtsm = urtsm.getStates();
const auto& Ps_urtsm = urtsm.getCovariances();
double t=0;
for (std::size_t i=0; i<Xs_erts.size(); ++i, t+=dt) {
collector.collect("ERTS", Xs_erts[i], Ps_erts[i], t);
collector.collect("SERTS", Xs_serts[i], Ps_serts[i], t);
collector.collect("IERTS", Xs_ierts[i], Ps_ierts[i], t);
collector.collect("URTSM", Xs_urtsm[i], Ps_urtsm[i], t);
}
}
// print the trajectory
if (!quiet) {
KALMANIF_DEMO_PRINT_TRAJECTORY(collector);
}
// Generate some metrics and print them
DemoDataProcessor<State>().process(collector).print();
// Actually plots only if PLOT_EXAMPLES=ON
DemoTrajPlotter<State>::plot(collector, filename, plot_trajectory);
DemoDataPlotter<State>::plot(collector, filename, plot_error);
return EXIT_SUCCESS;
}