-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
55 lines (33 loc) · 1.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
from tensorflow.python.keras.callbacks import TensorBoard
from time import time
from tensorflow.keras.layers import Bidirectional,TimeDistributed,Dense,LSTM
from tensorflow.keras import Sequential
from tensorflow.keras.models import load_model
tensorboard=TensorBoard(log_dir='logs/{}'.format(time()))
class MyModel:
def __init__(self,train, vec_size=300):
self.train=train
self.vec_size=vec_size
self.model=None
self.sent_length=20
self.testing=None
def model_compile(self):
self.model=Sequential()
self.model.add(Bidirectional(LSTM(units=150,
activation='relu',
input_shape=(self.train.shape[1],
self.train.shape[2]),
return_sequences=True)))
self.model.add(TimeDistributed(Dense(9,activation='softmax')))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
def training(self, train, labels, epoch=10, batch_size=64):
self.model.fit(train,labels, epochs=epoch, batch_size=batch_size)
print(self.model.summary())
def save_model(self):
self.model.save('my_model.h5')
def load_model(self):
self.model=load_model('mymodel.h5')
def predict(self, predict):
result=self.model.predict(predict)
print(result)