-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnets_test.py
278 lines (234 loc) · 11 KB
/
nets_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
This doesnt run with py.test, runs like `python nets_test.py [args ... ]`
hence I've prefixed everything with `_` so it doesnt run, but theres probably a better way (pytest.ini etc...)
Thats because this is going to run training, not very unit-testy :)
We want to check things like:
- does the context encoder work ok?
- can the termination policy learn?
We're going to try this with very stupid numbers first. If it doesnt work with stupid numbers, theres a problem :)
"""
import argparse
import json
import datetime
import time
import os
from os import path
import yaml
import torch
from torch import nn, autograd, optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import nets
import sampling
def _test_term_policy(term_entropy_reg, embedding_size, num_values, batch_size):
"""
So, we will have two contexts:
- previous proposal 0,0,0
- previous proposal 3,3,3
let's check the encodings are different :)
Then, we will traing the terminator to terminate on the second, and not on the first
Then we will repeat with some other numbers
"""
train = []
N = batch_size
seen_proposals = set()
for n in range(N):
seen = True
while seen:
proposal = sampling.sample_items(batch_size=1, num_values=num_values).view(-1)
hash = proposal[0] * 100 + proposal[1] * 10 + proposal[0]
seen = hash in seen_proposals
seen_proposals.add(seen)
term = np.random.choice(2, 1).item()
train.append({'proposal': proposal, 'term': term})
"""
also, lets use a small embedding, say 20, for speed
and lets have only 4 possible values
note: we should alos try with cuda and not cuda
"""
proposalencoder = nets.NumberSequenceEncoder(num_values=num_values, embedding_size=embedding_size)
combiner = nets.CombinedNet(num_sources=1, embedding_size=embedding_size)
term_policy = nets.TermPolicy(embedding_size=embedding_size)
params = set(proposalencoder.parameters()) | set(combiner.parameters()) | set(term_policy.parameters())
opt = optim.Adam(lr=0.001, params=params)
episode = 0
N = len(train)
prop_K = len(train[0]['proposal'])
num_episodes = 10000
batch_X = torch.LongTensor(N, prop_K).fill_(0)
batch_term = torch.ByteTensor(N).fill_(0)
for n in range(N):
batch_X[n] = torch.LongTensor(train[n]['proposal'])
batch_term[n] = train[n]['term']
baseline = 0
while True:
pred_enc = proposalencoder(Variable(batch_X))
combined = combiner(pred_enc)
term_probs, term_eligibility, term_a, entropy, argmax_matches = term_policy(combined, testing=False)
reward = (term_a.view(-1) == batch_term).float()
opt.zero_grad()
reward_loss = - term_eligibility * Variable(reward.view(-1, 1))
reward_loss = reward_loss.sum()
ent_loss = - term_entropy_reg * entropy
loss = reward_loss + ent_loss
autograd.backward([loss], [None])
opt.step()
baseline = 0.7 * baseline + 0.3 * reward.mean()
num_right = (term_a.view(-1) == batch_term).int().sum()
if episode % 100 == 0:
term_probs, term_node, term_a, entropy, argmax_matches = term_policy(combined, testing=True)
reward_val = (term_a.view(-1) == batch_term).float()
print('episode', episode, 'num_right', num_right, 'baseline', baseline, 'reward_val', reward_val.float().mean())
episode += 1
if episode >= num_episodes:
break
def _test_proposal_policy(proposal_entropy_reg, embedding_size, num_values, batch_size, enable_cuda):
"""
something similar to (now renamed) test_term_policy, but for proposal
"""
train = []
N = batch_size
seen_proposals = set()
for n in range(N):
seen = True
while seen:
prev_prop = sampling.sample_items(batch_size=1, num_values=num_values).view(-1)
hash = prev_prop[0] * 100 + prev_prop[1] * 10 + prev_prop[0]
seen = hash in seen_proposals
seen_proposals.add(seen)
# doesnt matter if we've seen this_prop before, it's ok. many to one mapping ok
this_prop = sampling.sample_items(batch_size=1, num_values=num_values).view(-1)
train.append({'prev_prop': prev_prop, 'this_prop': this_prop})
proposalencoder = nets.NumberSequenceEncoder(num_values=num_values, embedding_size=embedding_size)
combiner = nets.CombinedNet(num_sources=1, embedding_size=embedding_size)
proposal_policy = nets.ProposalPolicy(embedding_size=embedding_size, num_counts=num_values, num_items=3)
if enable_cuda:
proposalencoder = proposalencoder.cuda()
combiner = combiner.cuda()
proposal_policy = proposal_policy.cuda()
params = set(proposalencoder.parameters()) | set(combiner.parameters()) | set(proposal_policy.parameters())
opt = optim.Adam(lr=0.001, params=params)
episode = 0
N = len(train)
prop_K = len(train[0]['this_prop'])
batch_prev_prop = torch.LongTensor(N, prop_K).fill_(0)
batch_this_prop = torch.LongTensor(N, prop_K).fill_(0)
for n in range(N):
batch_prev_prop[n] = torch.LongTensor(train[n]['prev_prop'])
batch_this_prop[n] = torch.LongTensor(train[n]['this_prop'])
baseline = 0
if enable_cuda:
batch_prev_prop = batch_prev_prop.cuda()
batch_this_prop = batch_this_prop.cuda()
while True:
pred_enc = proposalencoder(Variable(batch_prev_prop))
combined = combiner(pred_enc)
proposal_nodes, proposal, entropy, matches_argmax_count, stochastic_draws_count = proposal_policy(combined, testing=False)
reward = (proposal == batch_this_prop).float().sum(1)
opt.zero_grad()
reward_loss = 0
for elig in proposal_nodes:
reward_loss -= elig * Variable(reward.view(-1, 1))
reward_loss = reward_loss.sum()
ent_loss = - proposal_entropy_reg * entropy
loss = reward_loss + ent_loss
autograd.backward([loss], [None])
opt.step()
baseline = 0.7 * baseline + 0.3 * reward.mean()
propitem_acc = (proposal == batch_this_prop).float().mean()
if episode % 100 == 0:
proposal_nodes, proposal, entropy, matches_argmax_count, stochastic_draws_count = proposal_policy(combined, testing=True)
reward_val = (proposal == batch_this_prop).float()
print('episode', episode, 'propitemacc %.3f' % propitem_acc, 'baseline %.3f' % baseline, 'reward_greedy %.3f' % reward_val.float().mean())
episode += 1
def _test_utterance_policy(utterance_entropy_reg, embedding_size, num_values, batch_size, enable_cuda):
"""
something similar to (now renamed) test_term_policy, but for utterance
"""
train = []
N = batch_size
vocab_size = 10
utt_len = 6
seen_proposals = set()
for n in range(N):
seen = True
while seen:
prev_prop = sampling.sample_items(batch_size=1, num_values=num_values).view(-1)
hash = prev_prop[0] * 100 + prev_prop[1] * 10 + prev_prop[0]
seen = hash in seen_proposals
seen_proposals.add(seen)
# doesnt matter if we've seen this_prop before, it's ok. many to one mapping ok
this_utt = sampling.sample_items(batch_size=1, num_values=vocab_size, seq_len=utt_len)
train.append({'prev_prop': prev_prop, 'this_utt': this_utt})
proposalencoder = nets.NumberSequenceEncoder(num_values=num_values, embedding_size=embedding_size)
combiner = nets.CombinedNet(num_sources=1, embedding_size=embedding_size)
utterance_policy = nets.UtterancePolicy(embedding_size=embedding_size, num_tokens=vocab_size, max_len=utt_len)
if enable_cuda:
proposalencoder = proposalencoder.cuda()
combiner = combiner.cuda()
utterance_policy = utterance_policy.cuda()
params = set(proposalencoder.parameters()) | set(combiner.parameters()) | set(utterance_policy.parameters())
opt = optim.Adam(lr=0.001, params=params)
episode = 0
N = len(train)
prop_K = len(train[0]['prev_prop'])
utt_K = utt_len
batch_prev_prop = torch.LongTensor(N, prop_K).fill_(0)
batch_this_utt = torch.LongTensor(N, utt_K).fill_(0)
for n in range(N):
batch_prev_prop[n] = torch.LongTensor(train[n]['prev_prop'])
batch_this_utt[n] = train[n]['this_utt']
baseline = 0
if enable_cuda:
batch_prev_prop = batch_prev_prop.cuda()
batch_this_utt = batch_this_utt.cuda()
while True:
pred_enc = proposalencoder(Variable(batch_prev_prop))
combined = combiner(pred_enc)
utterance_nodes, utterance, entropy, matches_argmax_count, stochastic_draws_count = utterance_policy(combined, testing=False)
reward = (utterance == batch_this_utt).float().sum(1)
opt.zero_grad()
reward_loss = 0
for elig in utterance_nodes:
reward_loss -= elig * Variable(reward.view(-1, 1))
reward_loss = reward_loss.sum()
ent_loss = - utterance_entropy_reg * entropy
loss = reward_loss + ent_loss
autograd.backward([loss], [None])
opt.step()
baseline = 0.7 * baseline + 0.3 * reward.mean()
# num_right = reward.mean()
perletter_acc = (utterance == batch_this_utt).float().mean()
if episode % 100 == 0:
utterance_nodes, utterance, entropy, matches_argmax_count, stochastic_draws_count = utterance_policy(combined, testing=True)
reward_val = (utterance == batch_this_utt).float()
print('episode', episode, 'letter acc %.3f' % perletter_acc, 'baseline %.3f' % baseline, 'reward_greedy %.3f' % reward_val.float().mean())
episode += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parsers = parser.add_subparsers()
parser_ = parsers.add_parser('test-term-policy')
parser_.add_argument('--term-entropy-reg', type=float, default=0.05)
parser_.add_argument('--embedding-size', type=int, default=100)
parser_.add_argument('--num-values', type=int, default=6)
parser_.add_argument('--batch-size', type=int, default=128)
parser_.set_defaults(func=_test_term_policy)
parser_ = parsers.add_parser('test-proposal-policy')
parser_.add_argument('--proposal-entropy-reg', type=float, default=0.05)
parser_.add_argument('--embedding-size', type=int, default=100)
parser_.add_argument('--num-values', type=int, default=6)
parser_.add_argument('--batch-size', type=int, default=128)
parser_.add_argument('--enable-cuda', action='store_true')
parser_.set_defaults(func=_test_proposal_policy)
parser_ = parsers.add_parser('test-utterance-policy')
parser_.add_argument('--utterance-entropy-reg', type=float, default=0.001)
parser_.add_argument('--embedding-size', type=int, default=100)
parser_.add_argument('--num-values', type=int, default=6)
parser_.add_argument('--batch-size', type=int, default=128)
parser_.add_argument('--enable-cuda', action='store_true')
parser_.set_defaults(func=_test_utterance_policy)
args = parser.parse_args()
func = args.func
del args.__dict__['func']
func(**args.__dict__)