Releases: ashleve/lightning-hydra-template
Releases · ashleve/lightning-hydra-template
v1.2.0
List of changes:
- Update template for compatibility with lightning v1.5 and pytorch v1.10
- General documentation improvements
- Move
LICENSE
toREADME.md
- Add manual resetting of metrics at the end of every epoch, to make sure no one makes hard to spot calculation mistakes
- Add experiment mode to all experiment configs
- Improve logging paths for experiment mode
- Add
MaxMetric
to model, for computation of best so far validation accuracy - Add
RichProgressBar
to default callbacks for the pretty formatted progress bar - Get rid of the trick for preventing auto hparam logging, since lightning now supports it with
self.save_hyperparameters(logger=False)
- Add
self.save_hyperparameters()
to datamodule since lightinng now supports it - Deprecate Apex support since native pytorch mixed-precision is better
- Deprecate bash script for conda setup since installation commands change too often to maintain it
- Change
trainer.terminate_on_nan
debug option totrainer.detect_anomaly
for compatibility with lightning v1.5 - Specify model and datamodule during
trainer.test()
, for compatibility with lightning v1.5 - Remove
configs/trainer/all_params.yaml
- Make hyperparameter optimization compatible with lightning v1.5
- Specify that EarlyStopping patience is counted in validation epochs and not in training epochs.
- Add a new way for accessing datamodule attributes to the
README.md
- Make debug mode automatically set the level of all command-line loggers to
DEBUG
- Make debug mode automatically set the trainer config to
debug.yaml
- Add generator seed to prevent test data leaking to train data in
datamodule.setup()
when seed is not set up - Move Dockerfile to
dockerfiles
branch - Modifiy
configs/trainer/debug.yaml
to enable some debug options - Remove unused
if config.get("debug"):
inextras
Special thanks for PRs to: @CharlesGaydon, @eungbean, @gscriva
v1.1.0
- introduce different running modes: default, debug, experiment
- fix pytorch installation in setup_conda.sh
- fix incorrect calculation of precision, recall and f1 score in wandb callback
- add
_self_
to config.yaml for compatibility with hydra1.1 - fix setting seed in
train.py
so it's skipped whenseed=null
- add exception message when trying to use wandb callbacks with
trainer.fast_dev_run=true
- change
axis=-1
todim=-1
in LogImagePredictions callback - add 'Reproducibilty' section to README.md
- UploadCodeAsArtifact: now uploads all files that are not ignored by git instead of all
*.py
files. - UploadCheckpointsAsArtifact: now uses
experiment.log_artifact(ckpts)
and uploads also on keyboard interrupt
v1.0.0
- update to Hydra 1.1
- add bash folder with scripts for conda setup and run scheduling
- add saving seed in
log_hyperparameters()
method - redesign Dockerfile to make it weight less
- add
test_after_training
parameter to config - add inheritance to trainer configs
- remove forcing ddp-friendly configuration
- refactor tests
- remove conda_env_gpu.yaml
- remove default langage version from pre-commit config
- add mnist datamodule unit test
- rename test folder from 'smoke' to 'shell'
- remove wandb import from utils.py
- change 'use_artifact' to 'log_artifact' in wandb callbacks
- add rank zero decorator to wandb callbacks
- add dumping rich tree config to file
- get rid of
=
character in ckpt names - update requirements.txt
- update README.md
v0.9.0
Release/0.9 (#141) * add flake8 and prettier to pre-commit-config * add setup.cfg * add workers=True to seed_everything() * update lightning badge logo * bump package versions * update README.md * add __init__.py files * add more logger configs parameters * add default Dockerfile * change .env.template to .env.example * move inference example to readme * remove img_dataset.py * simplify names of wandb callbacks * remove wandb test marker * format files with prettier