-
Notifications
You must be signed in to change notification settings - Fork 41
/
compute_td.py
152 lines (128 loc) · 5.94 KB
/
compute_td.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import logging
import hydra
import os
from pathlib import Path
from omegaconf import DictConfig, OmegaConf
from teach.data.babel import plot_timeline
import teach.launch.prepare
from teach.render.mesh_viz import visualize_meshes
from teach.render.video import save_video_samples, stack_vids
import torch
logger = logging.getLogger(__name__)
@hydra.main(config_path="configs", config_name="compute_td")
def _sample(cfg: DictConfig):
return sample(cfg)
def sample(newcfg: DictConfig) -> None:
logger.info("Compute distance script")
output_dir = Path(hydra.utils.to_absolute_path(newcfg.folder))
last_ckpt_path = newcfg.last_ckpt_path
prevcfg = OmegaConf.load(output_dir / ".hydra/config.yaml")
cfg = OmegaConf.merge(prevcfg, newcfg)
logger.info("Loading packages")
import pytorch_lightning as pl
import numpy as np
from hydra.utils import instantiate
import torch
pl.seed_everything(cfg.seed)
logger.info("Loading data module")
cfg.data.dtype = 'separate_pairs'
data_module = instantiate(cfg.data)
logger.info(f"Data module '{cfg.data.dataname}' loaded")
logger.info("Loading model")
# Instantiate all modules specified in the configs
model = instantiate(cfg.model,
nfeats=data_module.nfeats,
logger_name="none",
nvids_to_save=None,
_recursive_=False)
logger.info(f"Model '{cfg.model.modelname}' loaded")
# Load the last checkpoint
model = model.load_from_checkpoint(last_ckpt_path)
logger.info("Model weights restored")
model.transforms.rots2joints.jointstype = cfg.jointstype
model.eval()
logger.info(f"Put in eval mode and will produce {model.transforms.rots2joints.jointstype}")
if cfg.jointstype == "vertices":
return_type = "vertices"
else:
return_type = "joints"
# test a dummy example
with torch.no_grad():
if cfg.model.modelname == 'temos' and cfg.naive:
mjoints = model.forward_seq(["walk, jump"], [30+20], return_type=return_type)
else:
mjoints = model.forward_seq(["walk", "jump"], [30, 20],
align_full_bodies=cfg.align_full_bodies,
align_only_trans=cfg.align_only_trans,
slerp_window_size=cfg.slerp_window_size,
return_type=return_type)
if cfg.align_full_bodies:
option_text = "with aligning on rotation and translation"
elif cfg.align_only_trans:
option_text = "with aligning on translation only"
else:
option_text = "without any alignement"
if cfg.slerp_window_size is None:
option_text += " without slerp"
else:
option_text += f" with slerp, with a window size of {cfg.slerp_window_size}"
logger.info(f"Computing distance on {output_dir} model {option_text}")
logger.info(f"Computing distance on {cfg.model.modelname} model {option_text}")
dataset = getattr(data_module, f"{cfg.split}_dataset")
from teach.data.sampling import upsample
from tqdm import tqdm
ommited = 0
transition_distance = 0
nframes_for_computing_distance = 0
# remove printing for changing the seed
logging.getLogger('pytorch_lightning.utilities.seed').setLevel(logging.WARNING)
with torch.no_grad():
for keyid in (pbar := tqdm(dataset.keyids)):
pbar.set_description(f"Processing {keyid}")
one_data = dataset.load_keyid(keyid, mode='inference')
# dataset.dtype == 'separate_pairs'
if one_data['length_0'] == 1 or one_data['length_1'] == 1 :
logger.info(f'Omitted {keyid}')
ommited += 1
continue
a1 = one_data['text_0']
a2 = one_data['text_1']
l1 = one_data['length_0']
l2 = one_data['length_1']
l_trans = one_data['length_transition']
# fix the seed
pl.seed_everything(0)
from teach.transforms.smpl import RotTransDatastruct
if cfg.model.modelname == 'temos' and cfg.naive:
# extra parametrs does not matter as we produce one motion only
mjoints = model.forward_seq([f'{a1}, {a2}'], [l1+l2+l_trans], return_type=return_type)
else:
# + params etc TODO check
mjoints = model.forward_seq([a1, a2], [l1, l2+l_trans],
align_full_bodies=cfg.align_full_bodies,
align_only_trans=cfg.align_only_trans,
slerp_window_size=cfg.slerp_window_size,
return_type=return_type)
# check the transition frame distance
# for temos naive, the transition distance should be the lowest
transition_distance += torch.linalg.norm(mjoints[l1]-mjoints[l1-1], dim=-1).mean()
nframes_for_computing_distance += 1
mean_trans_dist = transition_distance / nframes_for_computing_distance
logger.info(f"Transition distance is: {mean_trans_dist*1000}, {mean_trans_dist}")
logger.info(f'Number of buggy groundtruth: {ommited}')
if __name__ == '__main__':
_sample()