-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
77 lines (60 loc) · 3.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from unityagents import UnityEnvironment
import numpy as np
import random
import torch
import matplotlib.pyplot as plt
from ddpg_agent import Agent
from collections import deque
env = UnityEnvironment(file_name='Reacher.app')
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
# reset the environment
env_info = env.reset(train_mode=True)[brain_name]
# number of agents
num_agents = len(env_info.agents)
print('Number of agents:', num_agents)
# size of each action
action_size = brain.vector_action_space_size
print('Size of each action:', action_size)
# examine the state space
states = env_info.vector_observations
state_size = states.shape[1]
print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size))
print('The state for the first agent looks like:', states[0])
agent = Agent(state_size=state_size, action_size=action_size, random_seed=1)
def ddpg(n_episodes=2000, max_t=20000):
scores_deque = deque(maxlen=100)
total_scores = []
for i_episode in range(1, n_episodes+1):
env_info = env.reset(train_mode=True)[brain_name] # reset the environment
states = env_info.vector_observations # get the current state (for each agent)
agent.reset()
scores = np.zeros(num_agents) # initialize the score (for each agent)
while True:
action = agent.act(states)
env_info = env.step(action)[brain_name]
next_states = env_info.vector_observations # get next state (for each agent)
rewards = env_info.rewards # get reward (for each agent)
dones = env_info.local_done # see if episode finished
agent.step(states, action, rewards, next_states, dones)
scores += rewards # update the score (for each agent)
states = next_states # roll over states to next time step
if np.any(dones): # exit loop if episode finished
break
scores_deque.append(np.mean(scores))
total_scores.append(np.mean(scores))
print('\rEpisode: \t{} \tScore: \t{:.2f} \tAverage Score: \t{:.2f}'.format(i_episode, np.mean(scores), np.mean(scores_deque)), end="")
if i_episode % 100 == 0:
torch.save(agent.actor_local.state_dict(), 'checkpoint_actor.pth')
torch.save(agent.critic_local.state_dict(), 'checkpoint_critic.pth')
if np.mean(scores_deque)>=30.0: # consider done when the average score reaches 30 or more
print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_deque)))
torch.save(agent.actor_local.state_dict(), 'checkpoint_actor.pth')
torch.save(agent.critic_local.state_dict(), 'checkpoint_critic.pth')
break
plt.plot(np.arange(1, len(total_scores)+1), total_scores)
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.show()
ddpg()