-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtennis.py
61 lines (47 loc) · 2.25 KB
/
tennis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from unityagents import UnityEnvironment
import numpy as np
import random
import torch
from ddpg_agent import Agent
env = UnityEnvironment(file_name='Tennis.app')
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
# reset the environment
env_info = env.reset(train_mode=False)[brain_name]
# number of agents
num_agents = len(env_info.agents)
print('Number of agents:', num_agents)
# size of each action
action_size = brain.vector_action_space_size
print('Size of each action:', action_size)
# examine the state space
states = env_info.vector_observations
state_size = states.shape[1]
print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size))
print('The state for the first agent looks like:', states[0])
state_size = state_size * 2
agent_1 = Agent(state_size=state_size, action_size=action_size, random_seed=1)
agent_2 = Agent(state_size=state_size, action_size=action_size, random_seed=1)
agent_1.actor_local.load_state_dict(torch.load('actor_1_model.pth'))
agent_1.critic_local.load_state_dict(torch.load('critic_1_model.pth'))
agent_2.actor_local.load_state_dict(torch.load('actor_2_model.pth'))
agent_2.critic_local.load_state_dict(torch.load('critic_2_model.pth'))
for i_episode in range(1, 10):
env_info = env.reset(train_mode=False)[brain_name] # reset the environment
states = env_info.vector_observations # get the current state (for each agent)
states = np.reshape(states, (1, state_size))
agent_1.reset()
agent_2.reset()
while True:
action_1 = agent_1.act(states, add_noise=False)
action_2 = agent_2.act(states, add_noise=False)
actions = np.concatenate((action_1, action_2), axis=0)
actions = np.reshape(actions, (1, 4))
env_info = env.step(actions)[brain_name]
next_states = env_info.vector_observations # get next state (for each agent)
next_states = np.reshape(next_states, (1, state_size))
dones = env_info.local_done # see if episode finished
states = next_states # roll over states to next time step
if np.any(dones): # exit loop if episode finished
break