-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathextract_multiscale_features.py
313 lines (224 loc) · 12.7 KB
/
extract_multiscale_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os, sys, cv2
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from os import path, mkdir
import argparse
import keyNet.aux.tools as aux
from skimage.transform import pyramid_gaussian
import HSequences_bench.tools.geometry_tools as geo_tools
import HSequences_bench.tools.repeatability_tools as rep_tools
from keyNet.model.keynet_architecture import *
import keyNet.aux.desc_aux_function as loss_desc
from keyNet.model.hardnet_pytorch import *
from keyNet.datasets.dataset_utils import read_bw_image
import torch
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def check_directory(dir):
if not path.isdir(dir):
mkdir(dir)
def create_result_dir(path):
directories = path.split('/')
tmp = ''
for idx, dir in enumerate(directories):
tmp += (dir + '/')
if idx == len(directories)-1:
continue
check_directory(tmp)
def extract_multiscale_features():
parser = argparse.ArgumentParser(description='HSequences Extract Features')
parser.add_argument('--list-images', type=str, help='File containing the image paths for extracting features.',
required=True)
parser.add_argument('--results-dir', type=str, default='extracted_features/',
help='The output path to save the extracted keypoint.')
parser.add_argument('--network-version', type=str, default='KeyNet_default',
help='The Key.Net network version name')
parser.add_argument('--checkpoint-det-dir', type=str, default='keyNet/pretrained_nets/KeyNet_default',
help='The path to the checkpoint file to load the detector weights.')
parser.add_argument('--pytorch-hardnet-dir', type=str, default='keyNet/pretrained_nets/HardNet++.pth',
help='The path to the checkpoint file to load the HardNet descriptor weights.')
# Detector Settings
parser.add_argument('--num-filters', type=int, default=8,
help='The number of filters in each learnable block.')
parser.add_argument('--num-learnable-blocks', type=int, default=3,
help='The number of learnable blocks after handcrafted block.')
parser.add_argument('--num-levels-within-net', type=int, default=3,
help='The number of pyramid levels inside the architecture.')
parser.add_argument('--factor-scaling-pyramid', type=float, default=1.2,
help='The scale factor between the multi-scale pyramid levels in the architecture.')
parser.add_argument('--conv-kernel-size', type=int, default=5,
help='The size of the convolutional filters in each of the learnable blocks.')
# Multi-Scale Extractor Settings
parser.add_argument('--extract-MS', type=bool, default=True,
help='Set to True if you want to extract multi-scale features.')
parser.add_argument('--num-points', type=int, default=1500,
help='The number of desired features to extract.')
parser.add_argument('--nms-size', type=int, default=15,
help='The NMS size for computing the validation repeatability.')
parser.add_argument('--border-size', type=int, default=15,
help='The number of pixels to remove from the borders to compute the repeatability.')
parser.add_argument('--order-coord', type=str, default='xysr',
help='The coordinate order that follows the extracted points. Use yxsr or xysr.')
parser.add_argument('--random-seed', type=int, default=12345,
help='The random seed value for TensorFlow and Numpy.')
parser.add_argument('--pyramid_levels', type=int, default=5,
help='The number of downsample levels in the pyramid.')
parser.add_argument('--upsampled-levels', type=int, default=1,
help='The number of upsample levels in the pyramid.')
parser.add_argument('--scale-factor-levels', type=float, default=np.sqrt(2),
help='The scale factor between the pyramid levels.')
parser.add_argument('--scale-factor', type=float, default=2.,
help='The scale factor to extract patches before descriptor.')
# GPU Settings
parser.add_argument('--gpu-memory-fraction', type=float, default=0.9,
help='The fraction of GPU used by the script.')
parser.add_argument('--gpu-visible-devices', type=str, default="0",
help='Set CUDA_VISIBLE_DEVICES variable.')
args = parser.parse_known_args()[0]
# remove verbose bits from tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.logging.set_verbosity(tf.logging.ERROR)
# Set CUDA GPU environment
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_visible_devices
version_network_name = args.network_version
if not args.extract_MS:
args.pyramid_levels = 0
args.upsampled_levels = 0
print('Extract features for : ' + version_network_name)
aux.check_directory(args.results_dir)
aux.check_directory(os.path.join(args.results_dir, version_network_name))
def extract_features(image):
pyramid = pyramid_gaussian(image, max_layer=args.pyramid_levels, downscale=args.scale_factor_levels)
score_maps = {}
for (j, resized) in enumerate(pyramid):
im = resized.reshape(1, resized.shape[0], resized.shape[1], 1)
feed_dict = {
input_network: im,
phase_train: False,
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = sess.run(maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=args.border_size)
score_maps['map_' + str(j + 1 + args.upsampled_levels)] = im_scores[0, :, :, 0]
if args.upsampled_levels:
for j in range(args.upsampled_levels):
factor = args.scale_factor_levels ** (args.upsampled_levels - j)
up_image = cv2.resize(image, (0, 0), fx=factor, fy=factor)
im = np.reshape(up_image, (1, up_image.shape[0], up_image.shape[1], 1))
feed_dict = {
input_network: im,
phase_train: False,
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
im_scores = sess.run(maps, feed_dict=feed_dict)
im_scores = geo_tools.remove_borders(im_scores, borders=args.border_size)
score_maps['map_' + str(j + 1)] = im_scores[0, :, :, 0]
im_pts = []
for idx_level in range(levels):
scale_value = (args.scale_factor_levels ** (idx_level - args.upsampled_levels))
scale_factor = 1. / scale_value
h_scale = np.asarray([[scale_factor, 0., 0.], [0., scale_factor, 0.], [0., 0., 1.]])
h_scale_inv = np.linalg.inv(h_scale)
h_scale_inv = h_scale_inv / h_scale_inv[2, 2]
num_points_level = point_level[idx_level]
if idx_level > 0:
res_points = int(np.asarray([point_level[a] for a in range(0, idx_level + 1)]).sum() - len(im_pts))
num_points_level = res_points
im_scores = rep_tools.apply_nms(score_maps['map_' + str(idx_level + 1)], args.nms_size)
im_pts_tmp = geo_tools.get_point_coordinates(im_scores, num_points=num_points_level, order_coord='xysr')
im_pts_tmp = geo_tools.apply_homography_to_points(im_pts_tmp, h_scale_inv)
if not idx_level:
im_pts = im_pts_tmp
else:
im_pts = np.concatenate((im_pts, im_pts_tmp), axis=0)
if args.order_coord == 'yxsr':
im_pts = np.asarray(list(map(lambda x: [x[1], x[0], x[2], x[3]], im_pts)))
im_pts = im_pts[(-1 * im_pts[:, 3]).argsort()]
im_pts = im_pts[:args.num_points]
# Extract descriptor from features
descriptors = []
im = image.reshape(1, image.shape[0], image.shape[1], 1)
for idx_desc_batch in range(int(len(im_pts) / 250 + 1)):
points_batch = im_pts[idx_desc_batch * 250: (idx_desc_batch + 1) * 250]
if not len(points_batch):
break
feed_dict = {
input_network: im,
phase_train: False,
kpts_coord: points_batch[:, :2],
kpts_scale: args.scale_factor * points_batch[:, 2],
kpts_batch: np.zeros(len(points_batch)),
dimension_image: np.array([1, im.shape[1], im.shape[2]], dtype=np.int32),
}
patch_batch = sess.run(input_patches, feed_dict=feed_dict)
patch_batch = np.reshape(patch_batch, (patch_batch.shape[0], 1, 32, 32))
data_a = torch.from_numpy(patch_batch)
data_a = data_a.cuda()
data_a = Variable(data_a)
with torch.no_grad():
out_a = model(data_a)
desc_batch = out_a.data.cpu().numpy().reshape(-1, 128)
if idx_desc_batch == 0:
descriptors = desc_batch
else:
descriptors = np.concatenate([descriptors, desc_batch], axis=0)
return im_pts, descriptors
with tf.Graph().as_default():
tf.set_random_seed(args.random_seed)
with tf.name_scope('inputs'):
# Define the input tensor shape
tensor_input_shape = (None, None, None, 1)
input_network = tf.placeholder(dtype=tf.float32, shape=tensor_input_shape, name='input_network')
dimension_image = tf.placeholder(dtype=tf.int32, shape=(3,), name='dimension_image')
kpts_coord = tf.placeholder(dtype=tf.float32, shape=(None, 2), name='kpts_coord')
kpts_batch = tf.placeholder(dtype=tf.int32, shape=(None,), name='kpts_batch')
kpts_scale = tf.placeholder(dtype=tf.float32, name='kpts_scale')
phase_train = tf.placeholder(tf.bool, name='phase_train')
with tf.name_scope('model_deep_detector'):
deep_architecture = keynet(args)
output_network = deep_architecture.model(input_network, phase_train, dimension_image, reuse=False)
maps = tf.nn.relu(output_network['output'])
# Extract Patches from inputs:
input_patches = loss_desc.build_patch_extraction(kpts_coord, kpts_batch, input_network, kpts_scale=kpts_scale)
# Define Pytorch HardNet
model = HardNet()
checkpoint = torch.load(args.pytorch_hardnet_dir)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
model.cuda()
# Define variables
detect_var = [v for v in tf.trainable_variables(scope='model_deep_detector')]
if os.listdir(args.checkpoint_det_dir):
init_assign_op_det, init_feed_dict_det = tf.contrib.framework.assign_from_checkpoint(
tf.train.latest_checkpoint(args.checkpoint_det_dir), detect_var)
point_level = []
tmp = 0.0
factor_points = (args.scale_factor_levels ** 2)
levels = args.pyramid_levels + args.upsampled_levels + 1
for idx_level in range(levels):
tmp += factor_points ** (-1 * (idx_level - args.upsampled_levels))
point_level.append(args.num_points * factor_points ** (-1 * (idx_level - args.upsampled_levels)))
point_level = np.asarray(list(map(lambda x: int(x / tmp), point_level)))
# GPU Usage
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
if os.listdir(args.checkpoint_det_dir):
sess.run(init_assign_op_det, init_feed_dict_det)
# read image and extract keypoints and descriptors
f = open(args.list_images, "r")
for path_to_image in f:
path = path_to_image.split('\n')[0]
if not os.path.exists(path):
print('[ERROR]: File {0} not found!'.format(path))
return
create_result_dir(os.path.join(args.results_dir, version_network_name, path))
im = read_bw_image(path)
im = im.astype(float) / im.max()
im_pts, descriptors = extract_features(im)
file_name = os.path.join(args.results_dir, version_network_name, path)+'.kpt'
np.save(file_name, im_pts)
file_name = os.path.join(args.results_dir, version_network_name, path)+'.dsc'
np.save(file_name, descriptors)
if __name__ == '__main__':
extract_multiscale_features()