forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_gen.py
133 lines (104 loc) · 5.4 KB
/
video_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import pickle
from tracker import Tracker
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
from image_gen import (
abs_sobel_thresh, color_thresh, window_mask
)
dist_pickle = pickle.load(open('camera_cal/calibration_pickle.p', 'rb'))
mtx = dist_pickle['mtx']
dist = dist_pickle['dist']
def process_img(img):
img = cv2.undistort(img, mtx, dist, None, mtx)
preprocess_image = np.zeros_like(img[:,:,0])
gradx = abs_sobel_thresh(img, orient='x', thresh=(12, 255))
grady = abs_sobel_thresh(img, orient='y', thresh=(25, 255))
c_binary = color_thresh(img, sthresh=(100, 255), vthresh=(50, 255))
preprocess_image[((gradx == 1) & (grady == 1) | (c_binary == 1))] = 255
img_size = (img.shape[1], img.shape[0])
bot_width = .76
mid_width = .08
height_pct = .62
bottom_trim = .935
src = np.float32([
[img.shape[1]*(.5-mid_width/2), img.shape[0]*height_pct],
[img.shape[1]*(.5+mid_width/2), img.shape[0]*height_pct],
[img.shape[1]*(.5+bot_width/2), img.shape[0]*bottom_trim],
[img.shape[1]*(.5-bot_width/2), img.shape[0]*bottom_trim],
])
offset = img.shape[1]*.25
dst = np.float32([
[offset, 0],
[img.shape[1]-offset, 0],
[img.shape[1]-offset, img.shape[0]],
[offset, img.shape[0]]
])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(preprocess_image, M, img_size, flags=cv2.INTER_LINEAR)
window_width = 25
window_height = 80
curve_centers = Tracker(Mywindow_width=window_width, Mywindow_height=window_height, Mymargin=25, My_ym=10/720, My_xm=4/384, Mysmooth_factor=15)
window_centroids = curve_centers.find_window_centroids(warped)
l_points = np.zeros_like(warped)
r_points = np.zeros_like(warped)
leftx = []
rightx = []
for level in range(len(window_centroids)):
leftx.append(window_centroids[level][0])
rightx.append(window_centroids[level][1])
l_mask = window_mask(window_width, window_height, warped, window_centroids[level][0], level)
r_mask = window_mask(window_width, window_height, warped, window_centroids[level][1], level)
l_points[(l_points == 255) | (l_mask == 1)] = 255
r_points[(r_points == 255) | (r_mask == 1)] = 255
# Draw
# template = np.array(r_points+l_points, np.uint8)
# zero_channel=np.zeros_like(template)
# template = np.array(cv2.merge((zero_channel, template, zero_channel)), np.uint8)
# warpage = np.array(cv2.merge((warped, warped, warped)), np.uint8)
# result = cv2.addWeighted(warpage, 1, template, 0.5, 0.0)
# result = warped
yvals = range(0, warped.shape[0])
res_yvals = np.arange(warped.shape[0]-(window_height/2), 0, -window_height)
left_fit = np.polyfit(res_yvals, leftx, 2)
left_fitx = left_fit[0]*yvals*yvals + left_fit[1]*yvals + left_fit[2]
left_fitx = np.array(left_fitx, np.int32)
right_fit = np.polyfit(res_yvals, rightx, 2)
right_fitx = right_fit[0]*yvals*yvals + right_fit[1]*yvals + right_fit[2]
right_fitx = np.array(right_fitx, np.int32)
left_lane = np.array(list(zip(np.concatenate((left_fitx-window_width/2,left_fitx[::-1]+window_width/2), axis=0),
np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)
right_lane = np.array(list(zip(np.concatenate((right_fitx-window_width/2,right_fitx[::-1]+window_width/2), axis=0),
np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)
inner_lane = np.array(list(zip(np.concatenate((left_fitx+window_width/2,right_fitx[::-1]-window_width/2), axis=0),
np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)
road = np.zeros_like(img)
road_bkg = np.zeros_like(img)
cv2.fillPoly(road, [left_lane], color=[255, 0,0])
cv2.fillPoly(road, [right_lane], color=[0, 0, 255])
cv2.fillPoly(road, [inner_lane], color=[0, 255, 0])
cv2.fillPoly(road_bkg, [left_lane], color=[255, 255, 255])
cv2.fillPoly(road_bkg, [right_lane], color=[255, 255, 255])
road_warped = cv2.warpPerspective(road, Minv, img_size, flags=cv2.INTER_LINEAR)
road_warped_bkg = cv2.warpPerspective(road_bkg, Minv, img_size, flags=cv2.INTER_LINEAR)
base = cv2.addWeighted(img, 1.0, road_warped_bkg, -1.0, 0.0)
result = cv2.addWeighted(base, 1.0, road_warped, .7, 0.0)
ym_per_pix = curve_centers.ym_per_pix
xm_per_pix= curve_centers.xm_per_pix
curve_fit_cr = np.polyfit(np.array(res_yvals,np.float32)*ym_per_pix, np.array(leftx, np.float32)*xm_per_pix, 2)
curverad = ((1 + (2*curve_fit_cr[0]*yvals[-1]*ym_per_pix + curve_fit_cr[1])**2)**1.5) / np.absolute(2*curve_fit_cr[0])
camera_center = (left_fitx[-1] + right_fitx[-1])/2
center_diff = (camera_center-warped.shape[1]/2)*xm_per_pix
side_pos = 'left'
if center_diff <=0:
side_pos = 'right'
cv2.putText(result, 'Radius of Curvature = '+str(round(curverad, 3))+'(m)',(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
cv2.putText(result, 'Vehicle is '+str(abs(round(center_diff, 3)))+'m '+side_pos+' of center',(50,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
return result
if __name__ == '__main__':
output_video = 'output_tracked1.mp4'
input_video = 'project_video.mp4'
clip1 = VideoFileClip(input_video)
video_clip = clip1.fl_image(process_img)
video_clip.write_videofile(output_video, audio=False)