-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
219 lines (181 loc) · 7.02 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
""" Parts of the U-Net model """
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def positionalencoding1d(d_model, length):
"""
:param d_model: dimension of the model
:param length: length of positions
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model)
)
pe = torch.zeros(length, d_model)
position = torch.arange(0, length).unsqueeze(1)
div_term = torch.exp(
(
torch.arange(0, d_model, 2, dtype=torch.float)
* -(math.log(10000.0) / d_model)
)
)
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
return pe
def get_position_embeddings(t, device):
x = positionalencoding1d(32, 1000).to(device)
emb = x[t]
return emb
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2), DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(
in_channels, in_channels // 2, kernel_size=2, stride=2
)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
self.class_embed = nn.Linear(10, 32)
input_size = [32, 64, 128, 256, 512, 1024, 512, 256, 128, 64]
self.linears = nn.ModuleList(
[
nn.Linear(input_size[0], input_size[i + 1])
for i in range(len(input_size) - 1)
]
)
def forward(self, x, t, y=None):
x1 = self.inc(x)
if y is not None:
y_embed = self.class_embed(y)
t = t + y_embed
t1 = self.linears[0](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x1 = x1 + t1
x2 = self.down1(x1)
t1 = self.linears[1](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x2 = x2 + t1
x3 = self.down2(x2)
t1 = self.linears[2](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x3 = x3 + t1
x4 = self.down3(x3)
t1 = self.linears[3](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x4 = x4 + t1
x5 = self.down4(x4)
t1 = self.linears[4](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x5 = x5 + t1
x = self.up1(x5, x4)
t1 = self.linears[5](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x = x + t1
x = self.up2(x, x3)
t1 = self.linears[6](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x = x + t1
x = self.up3(x, x2)
t1 = self.linears[7](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x = x + t1
x = self.up4(x, x1)
t1 = self.linears[8](t)
t1 = t1.unsqueeze(-1).unsqueeze(-1)
x = x + t1
logits = self.outc(x)
return logits
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 12, 3)
self.conv2 = nn.Conv2d(12, 12, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(12, 32, 3)
self.conv4 = nn.Conv2d(32, 32, 3)
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120+32, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x, t_embed):
x = self.pool(F.relu(self.conv2(F.relu(self.conv1(x)))))
x = self.pool(F.relu(self.conv4(F.relu(self.conv3(x)))))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = torch.cat([x, t_embed], dim=1)
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def cond_fn(x, t_embed, classifier, y=None, scale=1):
assert y is not None
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
logits = classifier(x_in, t_embed)
log_probs = F.log_softmax(logits, dim=-1)
selected = log_probs[range(len(logits)), y.view(-1)]
return torch.autograd.grad(selected.sum(), x_in)[0] * scale