-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathexample.py
90 lines (69 loc) · 2.69 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
from ukf import UKF
import csv
import numpy as np
import math
def iterate_x(x_in, timestep, inputs):
'''this function is based on the x_dot and can be nonlinear as needed'''
ret = np.zeros(len(x_in))
ret[0] = x_in[0] + timestep * x_in[3] * math.cos(x_in[2])
ret[1] = x_in[1] + timestep * x_in[3] * math.sin(x_in[2])
ret[2] = x_in[2] + timestep * x_in[4]
ret[3] = x_in[3] + timestep * x_in[5]
ret[4] = x_in[4]
ret[5] = x_in[5]
return ret
def main():
np.set_printoptions(precision=3)
# Process Noise
q = np.eye(6)
q[0][0] = 0.0001
q[1][1] = 0.0001
q[2][2] = 0.0004
q[3][3] = 0.0025
q[4][4] = 0.0025
q[5][5] = 0.0025
# create measurement noise covariance matrices
r_imu = np.zeros([2, 2])
r_imu[0][0] = 0.01
r_imu[1][1] = 0.03
r_compass = np.zeros([1, 1])
r_compass[0][0] = 0.02
r_encoder = np.zeros([1, 1])
r_encoder[0][0] = 0.001
# pass all the parameters into the UKF!
# number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function
state_estimator = UKF(6, q, np.zeros(6), 0.0001*np.eye(6), 0.04, 0.0, 2.0, iterate_x)
with open('example.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
reader.next()
last_time = 0
# read data
for row in reader:
row = [float(x) for x in row]
cur_time = row[0]
d_time = cur_time - last_time
real_state = np.array([row[i] for i in [5, 6, 4, 3, 2, 1]])
# create an array for the data from each sensor
compass_hdg = row[9]
compass_data = np.array([compass_hdg])
encoder_vel = row[10]
encoder_data = np.array([encoder_vel])
imu_accel = row[7]
imu_yaw_rate = row[8]
imu_data = np.array([imu_yaw_rate, imu_accel])
last_time = cur_time
# prediction is pretty simple
state_estimator.predict(d_time)
# updating isn't bad either
# remember that the updated states should be zero-indexed
# the states should also be in the order of the noise and data matrices
state_estimator.update([4, 5], imu_data, r_imu)
state_estimator.update([2], compass_data, r_compass)
state_estimator.update([3], encoder_vel, r_encoder)
print "--------------------------------------------------------"
print "Real state: ", real_state
print "Estimated state: ", state_estimator.get_state()
print "Difference: ", real_state - state_estimator.get_state()
if __name__ == "__main__":
main()