-
Notifications
You must be signed in to change notification settings - Fork 30
/
phiseg_generate_samples.py
204 lines (139 loc) · 5.98 KB
/
phiseg_generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import glob
import logging
import os
from importlib.machinery import SourceFileLoader
import cv2
import argparse
import numpy as np
import config.system as sys_config
import utils
from data.data_switch import data_switch
from phiseg.phiseg_model import phiseg
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
# import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
model_selection = 'best_ged'
def preproc_image(x, nlabels=None):
x_b = np.squeeze(x)
ims = x_b.shape[:2]
if nlabels:
x_b = np.uint8((x_b / (nlabels)) * 255) # not nlabels - 1 because I prefer gray over white
else:
x_b = utils.convert_to_uint8(x_b)
# x_b = cv2.cvtColor(np.squeeze(x_b), cv2.COLOR_GRAY2BGR)
# x_b = utils.histogram_equalization(x_b)
x_b = utils.resize_image(x_b, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST)
# ims_n = x_b.shape[:2]
# x_b = x_b[ims_n[0]//4:3*ims_n[0]//4, ims_n[1]//4: 3*ims_n[1]//4,...]
return x_b
def generate_error_maps(sample_arr, gt_arr):
def pixel_wise_xent(m_samp, m_gt, eps=1e-8):
log_samples = np.log(m_samp + eps)
return -1.0*np.sum(m_gt*log_samples, axis=-1)
mean_seg = np.mean(sample_arr, axis=0)
N = sample_arr.shape[0]
M = gt_arr.shape[0]
sX = sample_arr.shape[1]
sY = sample_arr.shape[2]
E_ss_arr = np.zeros((N,sX,sY))
for i in range(N):
E_ss_arr[i,...] = pixel_wise_xent(sample_arr[i,...], mean_seg)
E_ss = np.mean(E_ss_arr, axis=0)
E_sy_arr = np.zeros((M,N, sX, sY))
for j in range(M):
for i in range(N):
E_sy_arr[j,i, ...] = pixel_wise_xent(sample_arr[i,...], gt_arr[j,...])
E_sy_avg = np.mean(np.mean(E_sy_arr, axis=1), axis=0)
E_yy_arr = np.zeros((M,M, sX, sY))
for j in range(M):
for i in range(M):
E_yy_arr[j,i, ...] = pixel_wise_xent(sample_arr[i,...], gt_arr[j,...])
E_yy_avg = np.mean(np.mean(E_yy_arr, axis=1), axis=0)
return E_ss, E_sy_avg, E_yy_avg
def main(model_path, exp_config):
# Make and restore vagan model
phiseg_model = phiseg(exp_config=exp_config)
phiseg_model.load_weights(model_path, type=model_selection)
data_loader = data_switch(exp_config.data_identifier)
data = data_loader(exp_config)
N = data.test.images.shape[0]
n_images = 16
n_samples = 16
# indices = np.arange(N)
# sample_inds = np.random.choice(indices, n_images)
sample_inds = [165, 280, 213] # <-- prostate
# sample_inds = [1551] #[907, 1296, 1551] # <-- LIDC
for ii in sample_inds:
print('------- Processing image %d -------' % ii)
outfolder = os.path.join(model_path, 'samples_%s' % model_selection, str(ii))
utils.makefolder(outfolder)
x_b = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size))
s_b = data.test.labels[ii, ...]
if np.sum(s_b) < 10:
print('WARNING: skipping cases with no structures')
continue
s_b_r = utils.convert_batch_to_onehot(s_b.transpose((2, 0, 1)), exp_config.nlabels)
print('Plotting input image')
plt.figure()
x_b_d = preproc_image(x_b)
plt.imshow(x_b_d, cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'input_img_%d.png' % ii),bbox_inches='tight')
print('Generating 100 samples')
s_p_list = []
for kk in range(100):
s_p_list.append(phiseg_model.predict_segmentation_sample(x_b, return_softmax=True))
s_p_arr = np.squeeze(np.asarray(s_p_list))
print('Plotting %d of those samples' % n_samples)
for jj in range(n_samples):
s_p_sm = s_p_arr[jj,...]
s_p_am = np.argmax(s_p_sm, axis=-1)
plt.figure()
s_p_d = preproc_image(s_p_am, nlabels=exp_config.nlabels)
plt.imshow(s_p_d, cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'sample_img_%d_samp_%d.png' % (ii,jj)),bbox_inches='tight')
print('Plotting ground-truths masks')
for jj in range(s_b_r.shape[0]):
s_b_sm = s_b_r[jj,...]
s_b_am = np.argmax(s_b_sm, axis=-1)
plt.figure()
s_p_d = preproc_image(s_b_am, nlabels=exp_config.nlabels)
plt.imshow(s_p_d, cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'gt_img_%d_samp_%d.png' % (ii,jj)),bbox_inches='tight')
print('Generating error masks')
E_ss, E_sy_avg, E_yy_avg = generate_error_maps(s_p_arr, s_b_r)
print('Plotting them')
plt.figure()
plt.imshow(preproc_image(E_ss))
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'E_ss_%d.png' % ii), bbox_inches='tight')
print('Plotting them')
plt.figure()
plt.imshow(preproc_image(np.log(E_ss)))
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'log_E_ss_%d.png' % ii), bbox_inches='tight')
plt.figure()
plt.imshow(preproc_image(E_sy_avg))
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'E_sy_avg_%d_.png' % ii), bbox_inches='tight')
plt.figure()
plt.imshow(preproc_image(E_yy_avg))
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'E_yy_avg_%d_.png' % ii), bbox_inches='tight')
plt.close('all')
# plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Script for a simple test loop evaluating a network on the test dataset")
parser.add_argument("EXP_PATH", type=str, help="Path to experiment folder (assuming you are in the working directory)")
args = parser.parse_args()
base_path = sys_config.project_root
model_path = args.EXP_PATH
config_file = glob.glob(model_path + '/*py')[0]
config_module = config_file.split('/')[-1].rstrip('.py')
exp_config = SourceFileLoader(config_module, os.path.join(config_file)).load_module()
main(model_path, exp_config=exp_config)