-
Notifications
You must be signed in to change notification settings - Fork 11
/
data_for_augmentedimages_for_quality_evaluation.py
679 lines (568 loc) · 34.8 KB
/
data_for_augmentedimages_for_quality_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import numpy as np
np.random.seed(2591)
import os
import cv2
# from data_preparation import one_channel_evaluation, three_channel_evaluation
class DAGANDataset(object):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
"""
:param batch_size: The batch size to use for the data loader
:param last_training_class_index: The final index for the training set, used to restrict the training set
if needed. E.g. if training set is 1200 classes and last_training_class_index=900 then only the first 900
classes will be used
:param reverse_channels: A boolean indicating whether we need to reverse the colour channels e.g. RGB to BGR
:param num_of_gpus: Number of gpus to use for training
:param gen_batches: How many batches to use from the validation set for the end of epoch generations
"""
self.x_train, self.x_test, self.x_val = self.load_dataset(last_training_class_index)
# (900, 20, 28, 28, 1) (400, 20, 28, 28, 1) (22, 20, 28, 28, 1)
self.num_of_gpus = num_of_gpus
self.batch_size = batch_size
self.reverse_channels = reverse_channels
self.test_samples_per_label = gen_batches
self.support_number = support_number
self.is_training = is_training
self.general_classification_samples = general_classification_samples
self.selected_classes = selected_classes
self.image_size = image_size
### reptition choosen 32 classes from 22 categories, reptition choosen 1000 samples from each category
### selecting several categories from the validation set
# self.choose_gen_labels = np.random.choice(self.x_val.shape[0], self.batch_size, replace=True)
# self.choose_gen_samples = np.random.choice(len(self.x_val[0]), self.test_samples_per_label, replace=True)
# self.x_gen = self.x_val[self.choose_gen_labels]
# self.x_gen = self.x_gen[:, self.choose_gen_samples]
# self.x_gen = np.reshape(self.x_gen, newshape=(self.x_gen.shape[0] * self.x_gen.shape[1],
# self.x_gen.shape[2], self.x_gen.shape[3], self.x_gen.shape[4]))
# self.gen_batches = gen_batches
self.train_index = 0
self.val_index = 0
self.test_index = 0
self.indexes = {"train": 0, "val": 0, "test": 0, "gen": 0}
self.datasets = {"train": self.x_train,
"val": self.x_val,
"test": self.x_test}
self.image_height = self.image_size
self.image_width = self.image_size
self.image_channel = self.x_train[0].shape[3]
## classes
self.training_classes = self.x_train.shape[0]
self.testing_classes = self.x_test.shape[0]
self.val_classes = self.x_val.shape[0]
## classes * samples
self.training_data_size = self.x_train.shape[0] * self.x_train[0].shape[0]
self.testing_data_size = self.x_test.shape[0] * self.x_test[0].shape[0]
## gen_batches=10, how many batches used for generation
self.validation_data_size = self.x_val.shape[0] * self.x_val[0].shape[0]
self.generation_data_size = self.validation_data_size
def load_dataset(self, last_training_class_index):
"""
Loads the dataset into the data loader class. To be implemented in all classes that inherit
DAGANImbalancedDataset
:param last_training_class_index: last_training_class_index: The final index for the training set,
used to restrict the training set if needed. E.g. if training set is 1200 classes and
last_training_class_index=900 then only the first 900 classes will be used
"""
raise NotImplementedError
def preprocess_data(self, x):
"""
Preprocesses data such that their values lie in the -1.0 to 1.0 range so that the tanh activation gen output
can work properly
:param x: A data batch to preprocess
:return: A preprocessed data batch
"""
x = 2 * x - 1
if self.reverse_channels:
reverse_photos = np.ones(shape=x.shape)
for channel in range(x.shape[-1]):
reverse_photos[:, :, :, x.shape[-1] - 1 - channel] = x[:, :, :, channel]
x = reverse_photos
return x
def reconstruct_original(self, x):
"""
Applies the reverse operations that preprocess_data() applies such that the data returns to their original form
:param x: A batch of data to reconstruct
:return: A reconstructed batch of data
"""
x = (x + 1) / 2
return x
def shuffle(self, x):
"""
Shuffles the data batch along it's first axis
:param x: A data batch
:return: A shuffled data batch
"""
indices = np.arange(len(x))
np.random.shuffle(indices)
x = x[indices]
return x
def get_total_batch_images(self, dataset_name, samples_number_each_category):
categories = self.x_test.shape[0]
# samples_index = np.random.choice(self.datasets[dataset_name].shape[1], size=samples_number_each_category, replace=True)
total_samples = np.zeros(
[categories * samples_number_each_category, self.image_height, self.image_height, self.image_channel])
for i in range(categories):
for j in range(samples_number_each_category):
# print('here',samples_number_each_category*i+j)
total_samples[samples_number_each_category * i + j] = self.resize(self.datasets[dataset_name][i][j])
total_samples = total_samples * 255
return total_samples
def resize(self, image):
# image = np.int(255*image)
image = cv2.resize(image, (self.image_width, self.image_width), interpolation=cv2.INTER_LINEAR)
if self.image_channel < 3:
image = np.expand_dims(image, -1)
return image
def rgb2gray(self, rgb):
image = np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
image = cv2.resize(image, (28, 28), interpolation=cv2.INTER_LINEAR)
image = np.expand_dims(image, axis=-1)
return image
def get_batch(self, dataset_name):
if self.is_training > 0:
classes = self.training_classes
else:
# classes = self.training_classes
classes = self.testing_classes
if self.support_number > 5:
classes = self.training_classes
x_input_batch_a = np.zeros(
[self.batch_size, self.selected_classes, self.image_height, self.image_width,
self.image_channel])
y_input_batch_a = np.zeros([self.batch_size, self.selected_classes, self.selected_classes])
y_global_input_batch_a = np.zeros([self.batch_size, self.selected_classes, classes])
x_input_batch_b = np.zeros(
[self.batch_size, self.selected_classes * self.support_number, self.image_height, self.image_width,
self.image_channel])
y_input_batch_b = np.zeros(
[self.batch_size, self.selected_classes * self.support_number, self.selected_classes])
y_global_input_batch_b = np.zeros([self.batch_size, self.selected_classes * self.support_number, classes])
##### training ot testing few-shot classifier
# few-shot setting
# x_input_batch_a is one samples from the n-way-k-shot
# x_input_batch_b are N*K samples from the n-way-k-shot
##### testing general classifier
# for n-way-1-shot matchingGAN, X_Bi can be selected from the X_Si
# x_input_batch_a is
# print('total',np.shape(self.datasets[dataset_name])) (1200, 20, 28, 28, 1)
# xb_datasets = self.datasets[dataset_name][:, :1, :, :, :]
# xs_datasets = self.datasets[dataset_name][:, 1:, :, :, :]
if self.is_training > 0:
for i in range(self.batch_size):
choose_classes = np.random.choice(len(self.datasets[dataset_name]), size=self.selected_classes)
# choose_classes = [(i*self.selected_classes+j) for j in range(self.selected_classes)]
for j in range(self.selected_classes):
index = np.array([k for k in range(0, self.datasets[dataset_name][choose_classes[j]].shape[0])])
choose_samples = np.random.choice(index, size=self.support_number, replace=False)
x_input_batch_a[i, j, :, :, :] = self.resize(self.datasets[dataset_name][choose_classes[j]][0])
y_input_batch_a[i, j, j] = 1
y_global_input_batch_a[i, j, choose_classes[j]] = 1
for k in range(self.support_number):
x_input_batch_b[i, self.support_number * j + k, :, :, :] = \
self.resize(self.datasets[dataset_name][choose_classes[j]][choose_samples[k]])
y_input_batch_b[i, self.support_number * j + k, j] = 1
y_global_input_batch_b[i, self.support_number * j + k, choose_classes[j]] = 1
for i in range(self.selected_classes):
x_input_batch_a[:, i] = self.preprocess_data(x_input_batch_a[:, i])
for j in range(self.selected_classes * self.support_number):
x_input_batch_b[:, j] = self.preprocess_data(x_input_batch_b[:, j])
return x_input_batch_a, x_input_batch_b, y_input_batch_a, y_input_batch_b, y_global_input_batch_a, y_global_input_batch_b
else:
#### for trained matchingGAN to generate fake images
print('dataset name', dataset_name)
print('total data', np.shape(self.datasets[dataset_name]))
training_dataset = self.datasets[dataset_name][:, :self.general_classification_samples]
#### testing for classifier
testing_number = int(self.general_classification_samples * 0.4)
testing_dataset = self.datasets[dataset_name][:, self.general_classification_samples:]
print('training', np.shape(training_dataset))
print('testing', np.shape(testing_dataset))
self.training_data_size = len(training_dataset) * len(training_dataset[0])
self.testing_data_size = len(testing_dataset) * len(testing_dataset[0])
for i in range(self.batch_size):
choose_classes = np.random.choice(len(training_dataset), size=self.selected_classes)
for j in range(self.selected_classes):
choose_samples_a = np.random.choice(testing_dataset[choose_classes[j]].shape[0], size=1,
replace=False)
choose_samples_b = np.random.choice(training_dataset[choose_classes[j]].shape[0],
size=self.support_number, replace=False)
x_input_batch_a[i, j, :, :, :] = self.resize(
testing_dataset[choose_classes[j]][choose_samples_a[0]])
y_input_batch_a[i, j, j] = 1
y_global_input_batch_a[i, j, choose_classes[j]] = 1
for k in range(self.support_number):
x_input_batch_b[i, self.support_number * j + k, :, :, :] = self.resize(
training_dataset[choose_classes[j]][
choose_samples_b[k]])
y_input_batch_b[i, self.support_number * j + k, j] = 1
y_global_input_batch_b[i, self.support_number * j + k, choose_classes[j]] = 1
for i in range(self.selected_classes):
x_input_batch_a[:, i] = self.preprocess_data(x_input_batch_a[:, i])
for j in range(self.selected_classes * self.support_number):
x_input_batch_b[:, j] = self.preprocess_data(x_input_batch_b[:, j])
return x_input_batch_a, x_input_batch_b, y_input_batch_a, y_input_batch_b, y_global_input_batch_a, y_global_input_batch_b
def get_next_gen_batch(self):
"""
Provides a batch that contains data to be used for generation
:return: A data batch to use for generation
"""
if self.indexes["gen"] >= self.batch_size * self.gen_batches:
self.indexes["gen"] = 0
x_input_batch_a = self.datasets["gen"][self.indexes["gen"]:self.indexes["gen"] + self.batch_size]
self.indexes["gen"] += self.batch_size
return self.preprocess_data(x_input_batch_a)
def get_multi_batch(self, dataset_name):
"""
Returns a batch to be used for training or evaluation for multi gpu training
:param set_name: The name of the data-set to use e.g. "train", "test" etc
:return: Two batches (i.e. x_i and x_j) of size [num_gpus, batch_size, im_height, im_width, im_channels). If
the set is "gen" then we only return a single batch (i.e. x_i)
"""
x_input_a_batch = []
x_input_b_batch = []
y_input_batch_a = []
y_input_batch_b = []
y_global_input_batch_a = []
y_global_input_batch_b = []
if dataset_name == "gen":
x_input_a = self.get_next_gen_batch()
for n_batch in range(self.num_of_gpus):
x_input_a_batch.append(x_input_a)
x_input_a_batch = np.array(x_input_a_batch)
return x_input_a_batch
else:
for n_batch in range(self.num_of_gpus):
x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b = self.get_batch(
dataset_name)
x_input_a_batch.append(x_input_a)
x_input_b_batch.append(x_input_b)
y_input_batch_a.append(y_input_a)
y_input_batch_b.append(y_input_b)
y_global_input_batch_a.append(y_global_input_a)
y_global_input_batch_b.append(y_global_input_b)
x_input_a_batch = np.array(x_input_a_batch)
x_input_b_batch = np.array(x_input_b_batch)
y_input_batch_a = np.array(y_input_batch_a)
y_input_batch_b = np.array(y_input_batch_b)
y_global_input_batch_a = np.array(y_global_input_batch_a)
y_global_input_batch_b = np.array(y_global_input_batch_b)
return x_input_a_batch, x_input_b_batch, y_input_batch_a, y_input_batch_b, y_global_input_batch_a, y_global_input_batch_b
def get_train_batch(self):
"""
Provides a training batch
:return: Returns a tuple of two data batches (i.e. x_i and x_j) to be used for training
"""
x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b = self.get_multi_batch("train")
return x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b
def get_test_batch(self):
"""
Provides a test batch
:return: Returns a tuple of two data batches (i.e. x_i and x_j) to be used for evaluation
"""
x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b = self.get_multi_batch("test")
return x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b
def get_val_batch(self):
"""
Provides a val batch
:return: Returns a tuple of two data batches (i.e. x_i and x_j) to be used for evaluation
"""
x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b = self.get_multi_batch("val")
return x_input_a, x_input_b, y_input_a, y_input_b, y_global_input_a, y_global_input_b
def get_gen_batch(self):
"""
Provides a gen batch
:return: Returns a single data batch (i.e. x_i) to be used for generation on unseen data
"""
x_input_a = self.get_multi_batch("gen")
return x_input_a
class DAGANImbalancedDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training):
"""
:param batch_size: The batch size to use for the data loader
:param last_training_class_index: The final index for the training set, used to restrict the training set
if needed. E.g. if training set is 1200 classes and last_training_class_index=900 then only the first 900
classes will be used
:param reverse_channels: A boolean indicating whether we need to reverse the colour channels e.g. RGB to BGR
:param num_of_gpus: Number of gpus to use for training
:param gen_batches: How many batches to use from the validation set for the end of epoch generations
"""
self.x_train, self.x_test, self.x_val = self.load_dataset(last_training_class_index)
print('data shape', self.x_train.shape())
self.training_data_size = np.sum([len(self.x_train[i]) for i in range(self.x_train.shape[0])])
self.validation_data_size = np.sum([len(self.x_val[i]) for i in range(self.x_val.shape[0])])
self.testing_data_size = np.sum([len(self.x_test[i]) for i in range(self.x_test.shape[0])])
self.generation_data_size = gen_batches * batch_size
self.num_of_gpus = num_of_gpus
self.batch_size = batch_size
self.reverse_channels = reverse_channels
self.support_number = support_number
val_dict = dict()
idx = 0
for i in range(self.x_val.shape[0]):
temp = self.x_val[i]
for j in range(len(temp)):
val_dict[idx] = {"sample_idx": j, "label_idx": i}
idx += 1
choose_gen_samples = np.random.choice([i for i in range(self.validation_data_size)],
size=self.generation_data_size)
self.x_gen = np.array([self.x_val[val_dict[idx]["label_idx"]][val_dict[idx]["sample_idx"]]
for idx in choose_gen_samples])
self.train_index = 0
self.val_index = 0
self.test_index = 0
self.indexes = {"train": 0, "val": 0, "test": 0, "gen": 0}
self.datasets = {"train": self.x_train, "gen": self.x_gen,
"val": self.x_val,
"test": self.x_test}
self.gen_data_size = gen_batches * self.batch_size
self.image_height = self.x_train[0][0].shape[0]
self.image_width = self.x_train[0][0].shape[1]
self.image_channel = self.x_train[0][0].shape[2]
def get_batch(self, set_name):
"""
Generates a data batch to be used for training or evaluation
:param set_name: The name of the set to use, e.g. "train", "val" etc
:return: A data batch
"""
choose_classes = np.random.choice(len(self.datasets[set_name]), size=self.batch_size)
x_input_batch_a = []
x_input_batch_b = []
for i in range(self.batch_size):
choose_samples = np.random.choice(len(self.datasets[set_name][choose_classes[i]]),
size=self.support_number * self.batch_size,
replace=False)
choose_samples_a = choose_samples[:self.batch_size]
choose_samples_b = choose_samples[self.batch_size:]
current_class_samples = self.datasets[set_name][choose_classes[i]]
x_input_batch_a.append(current_class_samples[choose_samples_a[i]])
x_input_batch_b.append(current_class_samples[choose_samples_b[i]])
x_input_batch_a = np.array(x_input_batch_a)
x_input_batch_b = np.array(x_input_batch_b)
return self.preprocess_data(x_input_batch_a), self.preprocess_data(x_input_batch_b)
def get_next_gen_batch(self):
"""
Provides a batch that contains data to be used for generation
:return: A data batch to use for generation
"""
if self.indexes["gen"] >= self.gen_data_size:
self.indexes["gen"] = 0
x_input_batch_a = self.datasets["gen"][self.indexes["gen"]:self.indexes["gen"] + self.batch_size]
self.indexes["gen"] += self.batch_size
return self.preprocess_data(x_input_batch_a)
def get_multi_batch(self, set_name):
"""
Returns a batch to be used for training or evaluation for multi gpu training
:param set_name: The name of the data-set to use e.g. "train", "test" etc
:return: Two batches (i.e. x_i and x_j) of size [num_gpus, batch_size, im_height, im_width, im_channels). If
the set is "gen" then we only return a single batch (i.e. x_i)
"""
x_input_a_batch = []
x_input_b_batch = []
if set_name == "gen":
x_input_a = self.get_next_gen_batch()
for n_batch in range(self.num_of_gpus):
x_input_a_batch.append(x_input_a)
x_input_a_batch = np.array(x_input_a_batch)
return x_input_a_batch
else:
for n_batch in range(self.num_of_gpus):
x_input_a, x_input_b = self.get_batch(set_name)
x_input_a_batch.append(x_input_a)
x_input_b_batch.append(x_input_b)
x_input_a_batch = np.array(x_input_a_batch)
x_input_b_batch = np.array(x_input_b_batch)
return x_input_a_batch, x_input_b_batch
#### 1200:212:211
class OmniglotDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(OmniglotDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
##### generation images for the unseen categories for visualization
# self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/test_omniglot_c31_s28_data.npy")
# self.x = self.x / 255
# x_train, x_val, x_test = self.x[:12], self.x[0:12], self.x[:]
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/omniglot_data.npy")
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:1200], self.x[1200:1412], self.x[1412:]
# x_train = x_train[:gan_training_index]
return x_train, x_test, x_val
class OmniglotImbalancedDAGANDataset(DAGANImbalancedDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches):
super(OmniglotImbalancedDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels,
num_of_gpus, gen_batches, support_number)
def load_dataset(self, last_training_class_index):
x = np.load("../Matching-DAGAN-1wayKshot/datasets/omniglot_data.npy")
# x = np.load("../Matching-DAGAN-1wayKshot/datasets/test_omniglot_c31_s28_data.npy")
x_temp = []
for i in range(x.shape[0]):
choose_samples = np.random.choice([i for i in range(1, 15)])
x_temp.append(x[i, :choose_samples])
self.x = np.array(x_temp)
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:1200], self.x[1200:1412], self.x[1412:]
# x_train, x_val, x_test = self.x[:12], self.x[0:12], self.x[:]
# x_train = x_train[:last_training_class_index]
return x_train, x_test, x_val
### 1803:500:322 64*64*3
class VGGFaceDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(VGGFaceDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("./Augmentednpy/dataset_forquality/")
self.x = self.x / 255
x_train, x_val, x_test = self.x[:], self.x[:], self.x[:]
print('data shape', np.shape(self.x))
return x_train, x_test, x_val
# (149, 100, 84, 84, 3)
class animalsDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(animalsDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
# self.x = np.load("./Augmentednpy/dataset/animals_35.npy")
self.x = np.load("./Augmentednpy/dataset_forquality/animals_100.npy")
print('data shape', np.shape(self.x))
self.x = self.x / 255
x_train, x_val, x_test = self.x[:], self.x[:], self.x[:]
return x_train, x_test, x_val
## data shape (102, 40, 84, 84, 3)
class flowersDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(flowersDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
# self.x = np.load("./Augmentednpy/dataset/flowers_35.npy")
self.x = np.load("./Augmentednpy/dataset_forquality/flowers_100.npy")
print('data shape', np.shape(self.x))
self.x = self.x / 255
x_train, x_val, x_test = self.x[:], self.x[:], self.x[:]
return x_train, x_test, x_val
### 10000:5000:1000 28*28*1
class FIGRDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(FIGRDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training, general_classification_samples,
selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/FIGR_1_8_data.npy")
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:10000], self.x[10000:15000], self.x[15000:]
# x_train = x_train[:gan_training_index]
return x_train, x_test, x_val
class mnistDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(mnistDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/mnist.npy")
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:2], self.x[2:9], self.x[9:]
# x_train = x_train[:gan_training_index]
return x_train, x_test, x_val
#### 35:7:5 28*28*1
class emnistDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(emnistDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/emnist.npy")
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:35], self.x[35:42], self.x[42:]
# self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/test_emnist_c38_s28_data.npy")
# self.x = self.x / 255
# x_train, x_val, x_test = self.x[:], self.x[:], self.x[:]
# x_train = x_train[:gan_training_index]
return x_train, x_test, x_val
### 60:20:20 84*84*3
class miniImagenetDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(miniImagenetDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels,
num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
x_train = np.load("../Matching-DAGAN-1wayKshot/datasets/mini_imagenet_train_3_600_data.npy")
self.x = x_train
print('data shape', np.shape(x_train))
# print('here',np.min(x_train[:100],axis=(0,1,2,3)),np.mean(x_train[:100],axis=(0,1,2,3)),np.max(x_train[:100],axis=(0,1,2,3)),np.std(x_train[:100],axis=(0,1,2,3)))
x_train = x_train / np.max(x_train)
# x_train = x_train[:gan_training_index]
x_test = np.load("../Matching-DAGAN-1wayKshot/datasets/mini_imagenet_test_3_600_data.npy")
x_test = x_test / np.max(x_test)
x_val = np.load("../Matching-DAGAN-1wayKshot/datasets/mini_imagenet_val_3_600_data.npy")
x_val = x_val / np.max(x_val)
return x_train, x_test, x_val
class FC100DAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(FC100DAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
x_train = np.load("../Matching-DAGAN-1wayKshot/datasets/FC100_train_3_600_3_600_data.npy")
self.x = x_train
print('data shape', np.shape(x_train))
# print('here',np.min(x_train[:100],axis=(0,1,2,3)),np.mean(x_train[:100],axis=(0,1,2,3)),np.max(x_train[:100],axis=(0,1,2,3)),np.std(x_train[:100],axis=(0,1,2,3)))
x_train = x_train / np.max(x_train)
# x_train = x_train[:gan_training_index]
x_test = np.load("../Matching-DAGAN-1wayKshot/datasets/FC100_test_3_600_3_600_data.npy")
x_test = x_test / np.max(x_test)
x_val = np.load("../Matching-DAGAN-1wayKshot/datasets/FC100_val_3_600_3_600_data.npy")
x_val = x_val / np.max(x_val)
return x_train, x_test, x_val
# (82, 30, 84, 84, 3)
class flowersselectedDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(flowersselectedDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels,
num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/flowers_3_30_selected_3_30_data.npy")
print('data shape', np.shape(self.x))
self.x = self.x / np.max(self.x)
x_train, x_val, x_test = self.x[:70], self.x[30:70], self.x[70:]
return x_train, x_test, x_val
# (200, 40, 84, 84, 3)
class birdsDAGANDataset(DAGANDataset):
def __init__(self, batch_size, last_training_class_index, reverse_channels, num_of_gpus, gen_batches,
support_number, is_training, general_classification_samples, selected_classes, image_size):
super(birdsDAGANDataset, self).__init__(batch_size, last_training_class_index, reverse_channels, num_of_gpus,
gen_batches, support_number, is_training,
general_classification_samples, selected_classes, image_size)
def load_dataset(self, gan_training_index):
self.x = np.load("../Matching-DAGAN-1wayKshot/datasets/cub_3_40_selected_3_40_data.npy")
print('data shape', np.shape(self.x))
# print('here',np.min(self.x[:100],axis=(0,1,2,3)),np.mean(self.x[:100],axis=(0,1,2,3)),np.max(self.x[:100],axis=(0,1,2,3)),np.std(self.x[:100],axis=(0,1,2,3)))
self.x = self.x / np.max(self.x)
# self.x = np.reshape(self.x, newshape=(2354, 100, 64, 64, 3))
x_train, x_val, x_test = self.x[:100], self.x[100:150], self.x[150:]
# x_train = x_train[:gan_training_index]
return x_train, x_test, x_val
# data = flowersDAGANDataset(batch_size=1, last_training_class_index=900, reverse_channels=True,
# num_of_gpus=1, gen_batches=1000, support_number=1,is_training=True, general_classification_samples=5,selected_classes=5)
# x_input_batch_a, x_input_batch_b, y_input_batch_a, y_input_batch_b, y_global_input_batch_a, y_global_input_batch_b = data.get_batch('train')
# print(np.max(x_input_batch_a))
# print(np.min(x_input_batch_a))
# print(np.max(y_input_batch_a,axis=1))
# print(np.shape(y_global_input_batch_a))
# # print(np.max(y_global_input_batch_a,axis=1))
# print(x_input_batch_a[0][0][:3])