-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathckpt_to_dd.py
37 lines (33 loc) · 1.28 KB
/
ckpt_to_dd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import tensorflow as tf
import deepdish as dd
import argparse
import os
import numpy as np
def tr(v):
# tensorflow weights to pytorch weights
if v.ndim == 4:
return np.ascontiguousarray(v.transpose(3,2,0,1))
elif v.ndim == 2:
return np.ascontiguousarray(v.transpose())
return v
def read_ckpt(ckpt):
# https://github.com/tensorflow/tensorflow/issues/1823
reader = tf.train.NewCheckpointReader(ckpt)
weights = {n: reader.get_tensor(n) for (n, _) in reader.get_variable_to_shape_map().iteritems()}
pyweights = {k: tr(v) for (k, v) in weights.items()}
return pyweights
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Converts ckpt weights to deepdish hdf5")
parser.add_argument("infile", type=str,
help="Path to the ckpt.")
parser.add_argument("outfile", type=str, nargs='?', default='',
help="Output file (inferred if missing).")
args = parser.parse_args()
if args.outfile == '':
args.outfile = os.path.splitext(args.infile)[0] + '.h5'
outdir = os.path.dirname(args.outfile)
if not os.path.exists(outdir):
os.makedirs(outdir)
weights = read_ckpt(args.infile)
dd.io.save(args.outfile, weights)
weights2 = dd.io.load(args.outfile)