Using OpenWebText https://huggingface.co/datasets/openwebtext
from datasets import load_dataset
dataset = load_dataset("openwebtext", split='train')
dataset = load_dataset("stas/openwebtext-10k", split='train')
Megatron-LM t5 uses a subword-tokenized vocab from bert.
Ready datasets:
-
HF datasets use:
openwebtext
- 8M records--dataset_name "openwebtext"
stas/openwebtext-10k
- 10K records--dataset_name "stas/openwebtext-10k"
-
Jsonlines (derived):
$six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl
$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl
-
Megatron-preprocessed datasets (derived):
$six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-t5_text_document.*
$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5_text_document.*
-
Vocabs (from HF):
$six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt
For HF datasets and Jsonlines creation details, see gpt2.md. We only need to create the differently pre-processed datasets here.
t5 uses the same tokenizer/indexer as bert - can use it for either t5 or bert meg-lm trainings
Get uncased bert vocab:
cd $six_ALL_CCFRWORK/datasets-custom/vocabs
wget https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt -O bert-large-uncased-vocab.txt
To prep a 10k-sample for megatron
source $six_ALL_CCFRWORK/start-prod
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5 \
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt \
--dataset-impl mmap \
--tokenizer-type BertWordPieceLowerCase \
--split-sentences \
--workers 8
To prep a full dataset for megatron
source $six_ALL_CCFRWORK/start-prod
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5 \
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt \
--dataset-impl mmap \
--tokenizer-type BertWordPieceLowerCase \
--split-sentences \
--workers 8
as it should take a few hours to convert, use slurm/jsonl-to-meg-t5.slurm
job to complete it
sbatch jsonl-to-meg-t5.slurm
Pipeline Parallelism is not yet support for T5 (in works)
Setup: 1 node / 4 gpus
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
cd $six_ALL_CCFRWORK/code/megatron-lm
GPUS_PER_NODE=4
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
VOCAB_FILE=$six_ALL_CCFRWORK/datasets-custom/vocabs/bert-large-uncased-vocab.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-t5_text_sentence
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/t5
DISTRIBUTED_ARGS=" \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
# from t5 training:
# --global-batch-size 2048 \
GPT_ARGS=" \
--num-layers 12 \
--hidden-size 768 \
--num-attention-heads 12 \
--kv-channels 64 \
--ffn-hidden-size 3072 \
--encoder-seq-length 512 \
--decoder-seq-length 128 \
--micro-batch-size 16 \
--max-position-embeddings 512 \
--train-iters 1000000 \
--lr-decay-iters 1000000 \
--lr 0.0001 \
--min-lr 0.00001 \
--lr-decay-style linear \
--lr-warmup-fraction .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--fp16 \
"
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
python -m torch.distributed.launch \
$DISTRIBUTED_ARGS \
pretrain_t5.py \
--tensor-model-parallel-size 2 \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $SAVE_CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--vocab-file $VOCAB_FILE \
--vocab-extra-ids 100 \
--split 949,50,1 \
--distributed-backend nccl