-
Notifications
You must be signed in to change notification settings - Fork 0
/
heat_diffusion_main.py.backup
58 lines (45 loc) · 1.51 KB
/
heat_diffusion_main.py.backup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import matplotlib.pyplot as plt
import scienceplots
from tqdm import tqdm
plt.style.use(['science'])
dx = 0.1
dt = 0.1
k = 0.05
t_max = 1000
steps = int(t_max / dt)
ini_heat = np.zeros((500, 500))
ini_heat[100:180, 300:380] = 1
ini_heat[250:400, 100:250] = 0.8
heat = np.copy(ini_heat)
np.save(f'data/square/heat_diffuse_0000', ini_heat)
# Create a progress bar
progress_bar = tqdm(total=steps, unit=' Steps', ncols=100, ascii=True)
for t in range(steps):
ini_heat = np.copy(heat)
heat = np.zeros((500, 500))
for j in range(1, 499):
for i in range(1, 499):
heat[i,j] = ini_heat[i,j] + dt*k*(ini_heat[i+1,j+1] + ini_heat[i-1,j-1] + ini_heat[i-1,j+1] + ini_heat[i+1,j-1] - 4*ini_heat[i,j])/(2*dx**2)
if t % 10 == 0:
np.save(f'data/square/heat_diffuse_{t:04d}', heat)
plt.figure(figsize=(8, 7))
plt.imshow(ini_heat, origin='lower', cmap='jet', vmin=0, vmax=1)
# Colorbar with label
cbar = plt.colorbar(fraction=0.046, pad=0.04)
cbar.set_label('Temperature')
plt.minorticks_on()
plt.tick_params(axis='both', which='both', direction='out', top=False, right=False)
# Labels for x and y axes
plt.xlabel('X')
plt.ylabel('Y')
plt.title(f"Step = {t}")
plt.savefig(f'figures/square/heat_diffuse_{t:04d}')
plt.close()
else:
pass
# Update the progress bar
progress_bar.update(1)
# Close the progress bar
progress_bar.close()
print("Process complete!")