-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain_tcga.py
433 lines (378 loc) · 20.6 KB
/
train_tcga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms.functional as VF
from torchvision import transforms
import sys, argparse, os, copy, itertools, glob, datetime
import pandas as pd
import numpy as np
from scipy.stats import mode
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, roc_auc_score, balanced_accuracy_score, accuracy_score, hamming_loss
from sklearn.model_selection import KFold
from collections import OrderedDict
import json
from tqdm import tqdm
def get_bag_feats(csv_file_df, args):
if args.dataset == 'TCGA-lung-default':
feats_csv_path = 'datasets/tcga-dataset/tcga_lung_data_feats/' + csv_file_df.iloc[0].split('/')[1] + '.csv'
else:
feats_csv_path = csv_file_df.iloc[0]
df = pd.read_csv(feats_csv_path)
feats = shuffle(df).reset_index(drop=True)
feats = feats.to_numpy()
label = np.zeros(args.num_classes)
if args.num_classes==1:
label[0] = csv_file_df.iloc[1]
else:
if int(csv_file_df.iloc[1])<=(len(label)-1):
label[int(csv_file_df.iloc[1])] = 1
return label, feats, feats_csv_path
def generate_pt_files(args, df):
temp_train_dir = "temp_train"
if os.path.exists(temp_train_dir):
import shutil
shutil.rmtree(temp_train_dir, ignore_errors=True)
os.makedirs(temp_train_dir, exist_ok=True)
print('Creating intermediate training files.')
for i in tqdm(range(len(df))):
label, feats, feats_csv_path = get_bag_feats(df.iloc[i], args)
bag_label = torch.tensor(np.array([label]), dtype=torch.float32)
bag_feats = torch.tensor(np.array(feats), dtype=torch.float32)
repeated_label = bag_label.repeat(bag_feats.size(0), 1)
stacked_data = torch.cat((bag_feats, repeated_label), dim=1)
# Save the stacked data into a .pt file
pt_file_path = os.path.join(temp_train_dir, os.path.splitext(feats_csv_path)[0].split(os.sep)[-1] + ".pt")
torch.save(stacked_data, pt_file_path)
def train(args, train_df, milnet, criterion, optimizer):
milnet.train()
dirs = shuffle(train_df)
total_loss = 0
Tensor = torch.cuda.FloatTensor
for i, item in enumerate(dirs):
optimizer.zero_grad()
stacked_data = torch.load(item, map_location='cuda:0')
bag_label = Tensor(stacked_data[0, args.feats_size:]).unsqueeze(0)
bag_feats = Tensor(stacked_data[:, :args.feats_size])
bag_feats = dropout_patches(bag_feats, 1-args.dropout_patch)
bag_feats = bag_feats.view(-1, args.feats_size)
ins_prediction, bag_prediction, _, _ = milnet(bag_feats)
max_prediction, _ = torch.max(ins_prediction, 0)
bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
max_loss = criterion(max_prediction.view(1, -1), bag_label.view(1, -1))
loss = 0.5*bag_loss + 0.5*max_loss
loss.backward()
optimizer.step()
total_loss = total_loss + loss.item()
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f' % (i, len(train_df), loss.item()))
return total_loss / len(train_df)
def dropout_patches(feats, p):
num_rows = feats.size(0)
num_rows_to_select = int(num_rows * p)
random_indices = torch.randperm(num_rows)[:num_rows_to_select]
selected_rows = feats[random_indices]
return selected_rows
def test(args, test_df, milnet, criterion, thresholds=None, return_predictions=False):
milnet.eval()
total_loss = 0
test_labels = []
test_predictions = []
Tensor = torch.cuda.FloatTensor
with torch.no_grad():
for i, item in enumerate(test_df):
stacked_data = torch.load(item, map_location='cuda:0')
bag_label = Tensor(stacked_data[0, args.feats_size:]).unsqueeze(0)
bag_feats = Tensor(stacked_data[:, :args.feats_size])
bag_feats = dropout_patches(bag_feats, 1-args.dropout_patch)
bag_feats = bag_feats.view(-1, args.feats_size)
ins_prediction, bag_prediction, _, _ = milnet(bag_feats)
max_prediction, _ = torch.max(ins_prediction, 0)
bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
max_loss = criterion(max_prediction.view(1, -1), bag_label.view(1, -1))
loss = 0.5*bag_loss + 0.5*max_loss
total_loss = total_loss + loss.item()
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (i, len(test_df), loss.item()))
test_labels.extend([bag_label.squeeze().cpu().numpy().astype(int)])
if args.average:
test_predictions.extend([(torch.sigmoid(max_prediction)+torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
else: test_predictions.extend([torch.sigmoid(bag_prediction).squeeze().cpu().numpy()])
test_labels = np.array(test_labels)
test_predictions = np.array(test_predictions)
auc_value, _, thresholds_optimal = multi_label_roc(test_labels, test_predictions, args.num_classes, pos_label=1)
if thresholds: thresholds_optimal = thresholds
if args.num_classes==1:
class_prediction_bag = copy.deepcopy(test_predictions)
class_prediction_bag[test_predictions>=thresholds_optimal[0]] = 1
class_prediction_bag[test_predictions<thresholds_optimal[0]] = 0
test_predictions = class_prediction_bag
test_labels = np.squeeze(test_labels)
else:
for i in range(args.num_classes):
class_prediction_bag = copy.deepcopy(test_predictions[:, i])
class_prediction_bag[test_predictions[:, i]>=thresholds_optimal[i]] = 1
class_prediction_bag[test_predictions[:, i]<thresholds_optimal[i]] = 0
test_predictions[:, i] = class_prediction_bag
bag_score = 0
for i in range(0, len(test_df)):
bag_score = np.array_equal(test_labels[i], test_predictions[i]) + bag_score
avg_score = bag_score / len(test_df)
if return_predictions:
return total_loss / len(test_df), avg_score, auc_value, thresholds_optimal, test_predictions, test_labels
return total_loss / len(test_df), avg_score, auc_value, thresholds_optimal
def multi_label_roc(labels, predictions, num_classes, pos_label=1):
fprs = []
tprs = []
thresholds = []
thresholds_optimal = []
aucs = []
if len(predictions.shape)==1:
predictions = predictions[:, None]
if labels.ndim == 1:
labels = np.expand_dims(labels, axis=-1)
for c in range(0, num_classes):
label = labels[:, c]
prediction = predictions[:, c]
fpr, tpr, threshold = roc_curve(label, prediction, pos_label=1)
fpr_optimal, tpr_optimal, threshold_optimal = optimal_thresh(fpr, tpr, threshold)
# c_auc = roc_auc_score(label, prediction)
try:
c_auc = roc_auc_score(label, prediction)
print("ROC AUC score:", c_auc)
except ValueError as e:
if str(e) == "Only one class present in y_true. ROC AUC score is not defined in that case.":
print("ROC AUC score is not defined when only one class is present in y_true. c_auc is set to 1.")
c_auc = 1
else:
raise e
aucs.append(c_auc)
thresholds.append(threshold)
thresholds_optimal.append(threshold_optimal)
return aucs, thresholds, thresholds_optimal
def optimal_thresh(fpr, tpr, thresholds, p=0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def print_epoch_info(epoch, args, train_loss_bag, test_loss_bag, avg_score, aucs):
if args.dataset.startswith('TCGA-lung'):
print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, auc_LUAD: %.4f, auc_LUSC: %.4f' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score, aucs[0], aucs[1]))
else:
print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, AUC: ' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
def get_current_score(avg_score, aucs):
current_score = (sum(aucs) + avg_score)/2
return current_score
def save_model(args, fold, run, save_path, model, thresholds_optimal):
# Construct the filename including the fold number
save_name = os.path.join(save_path, f'fold_{fold}_{run+1}.pth')
torch.save(model.state_dict(), save_name)
print_save_message(args, save_name, thresholds_optimal)
file_name = os.path.join(save_path, f'fold_{fold}_{run+1}.json')
with open(file_name, 'w') as f:
json.dump([float(x) for x in thresholds_optimal], f)
def print_save_message(args, save_name, thresholds_optimal):
if args.dataset.startswith('TCGA-lung'):
print('Best model saved at: ' + save_name + ' Best thresholds: LUAD %.4f, LUSC %.4f' % (thresholds_optimal[0], thresholds_optimal[1]))
else:
print('Best model saved at: ' + save_name)
print('Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal)))
def main():
parser = argparse.ArgumentParser(description='Train DSMIL on 20x patch features learned by SimCLR')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512]')
parser.add_argument('--lr', default=0.0001, type=float, help='Initial learning rate [0.0001]')
parser.add_argument('--num_epochs', default=50, type=int, help='Number of total training epochs [100]')
parser.add_argument('--stop_epochs', default=10, type=int, help='Skip remaining epochs if training has not improved after N epochs [10]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--weight_decay', default=1e-3, type=float, help='Weight decay [1e-3]')
parser.add_argument('--dataset', default='TCGA-lung-default', type=str, help='Dataset folder name')
parser.add_argument('--split', default=0.2, type=float, help='Training/Validation split [0.2]')
parser.add_argument('--model', default='dsmil', type=str, help='MIL model [dsmil]')
parser.add_argument('--dropout_patch', default=0, type=float, help='Patch dropout rate [0]')
parser.add_argument('--dropout_node', default=0, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--non_linearity', default=1, type=float, help='Additional nonlinear operation [0]')
parser.add_argument('--average', type=bool, default=False, help='Average the score of max-pooling and bag aggregating')
parser.add_argument('--eval_scheme', default='5-fold-cv', type=str, help='Evaluation scheme [5-fold-cv | 5-fold-cv-standalone-test | 5-time-train+valid+test ]')
args = parser.parse_args()
print(args.eval_scheme)
gpu_ids = tuple(args.gpu_index)
os.environ['CUDA_VISIBLE_DEVICES']=','.join(str(x) for x in gpu_ids)
if args.model == 'dsmil':
import dsmil as mil
elif args.model == 'abmil':
import abmil as mil
def apply_sparse_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv1d)):
nn.init.orthogonal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def init_model(args):
i_classifier = mil.FCLayer(in_size=args.feats_size, out_size=args.num_classes).cuda()
b_classifier = mil.BClassifier(input_size=args.feats_size, output_class=args.num_classes, dropout_v=args.dropout_node, nonlinear=args.non_linearity).cuda()
milnet = mil.MILNet(i_classifier, b_classifier).cuda()
milnet.apply(lambda m: apply_sparse_init(m))
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(milnet.parameters(), lr=args.lr, betas=(0.5, 0.9), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs, 0.000005)
return milnet, criterion, optimizer, scheduler
if args.dataset == 'TCGA-lung-default':
bags_csv = 'datasets/tcga-dataset/TCGA.csv'
else:
bags_csv = os.path.join('datasets', args.dataset, args.dataset+'.csv')
generate_pt_files(args, pd.read_csv(bags_csv))
if args.eval_scheme == '5-fold-cv':
bags_path = glob.glob('temp_train/*.pt')
# bags_path = bags_path.sample(n=200)
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_results = []
save_path = os.path.join('weights', datetime.date.today().strftime("%Y%m%d"))
os.makedirs(save_path, exist_ok=True)
run = len(glob.glob(os.path.join(save_path, '*.pth')))
for fold, (train_index, test_index) in enumerate(kf.split(bags_path)):
print(f"Starting CV fold {fold}.")
milnet, criterion, optimizer, scheduler = init_model(args)
train_path = [bags_path[i] for i in train_index]
test_path = [bags_path[i] for i in test_index]
fold_best_score = 0
best_ac = 0
best_auc = 0
counter = 0
for epoch in range(1, args.num_epochs+1):
counter += 1
train_loss_bag = train(args, train_path, milnet, criterion, optimizer) # iterate all bags
test_loss_bag, avg_score, aucs, thresholds_optimal = test(args, test_path, milnet, criterion)
print_epoch_info(epoch, args, train_loss_bag, test_loss_bag, avg_score, aucs)
scheduler.step()
current_score = get_current_score(avg_score, aucs)
if current_score > fold_best_score:
counter = 0
fold_best_score = current_score
best_ac = avg_score
best_auc = aucs
save_model(args, fold, run, save_path, milnet, thresholds_optimal)
if counter > args.stop_epochs: break
fold_results.append((best_ac, best_auc))
mean_ac = np.mean(np.array([i[0] for i in fold_results]))
mean_auc = np.mean(np.array([i[1] for i in fold_results]), axis=0)
# Print mean and std deviation for each class
print(f"Final results: Mean Accuracy: {mean_ac}")
for i, mean_score in enumerate(mean_auc):
print(f"Class {i}: Mean AUC = {mean_score:.4f}")
elif args.eval_scheme == '5-time-train+valid+test':
bags_path = glob.glob('temp_train/*.pt')
# bags_path = bags_path.sample(n=50, random_state=42)
fold_results = []
save_path = os.path.join('weights', datetime.date.today().strftime("%Y%m%d"))
os.makedirs(save_path, exist_ok=True)
run = len(glob.glob(os.path.join(save_path, '*.pth')))
for iteration in range(5):
print(f"Starting iteration {iteration + 1}.")
milnet, criterion, optimizer, scheduler = init_model(args)
bags_path = shuffle(bags_path)
total_samples = len(bags_path)
train_end = int(total_samples * (1-args.split-0.1))
val_end = train_end + int(total_samples * 0.1)
train_path = bags_path[:train_end]
val_path = bags_path[train_end:val_end]
test_path = bags_path[val_end:]
fold_best_score = 0
best_ac = 0
best_auc = 0
counter = 0
for epoch in range(1, args.num_epochs + 1):
counter += 1
train_loss_bag = train(args, train_path, milnet, criterion, optimizer) # iterate all bags
test_loss_bag, avg_score, aucs, thresholds_optimal = test(args, val_path, milnet, criterion)
print_epoch_info(epoch, args, train_loss_bag, test_loss_bag, avg_score, aucs)
scheduler.step()
current_score = get_current_score(avg_score, aucs)
if current_score > fold_best_score:
counter = 0
fold_best_score = current_score
best_ac = avg_score
best_auc = aucs
save_model(args, iteration, run, save_path, milnet, thresholds_optimal)
best_model = copy.deepcopy(milnet)
if counter > args.stop_epochs: break
test_loss_bag, avg_score, aucs, thresholds_optimal = test(test_path, best_model, criterion, args)
fold_results.append((best_ac, best_auc))
mean_ac = np.mean(np.array([i[0] for i in fold_results]))
mean_auc = np.mean(np.array([i[1] for i in fold_results]), axis=0)
# Print mean and std deviation for each class
print(f"Final results: Mean Accuracy: {mean_ac}")
for i, mean_score in enumerate(mean_auc):
print(f"Class {i}: Mean AUC = {mean_score:.4f}")
if args.eval_scheme == '5-fold-cv-standalone-test':
bags_path = glob.glob('temp_train/*.pt')
bags_path = shuffle(bags_path)
reserved_testing_bags = bags_path[:int(args.split*len(bags_path))]
bags_path = bags_path[int(args.split*len(bags_path)):]
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_results = []
fold_models = []
save_path = os.path.join('weights', datetime.date.today().strftime("%Y%m%d"))
os.makedirs(save_path, exist_ok=True)
run = len(glob.glob(os.path.join(save_path, '*.pth')))
for fold, (train_index, test_index) in enumerate(kf.split(bags_path)):
print(f"Starting CV fold {fold}.")
milnet, criterion, optimizer, scheduler = init_model(args)
train_path = [bags_path[i] for i in train_index]
test_path = [bags_path[i] for i in test_index]
fold_best_score = 0
best_ac = 0
best_auc = 0
counter = 0
best_model = []
for epoch in range(1, args.num_epochs+1):
counter += 1
train_loss_bag = train(args, train_path, milnet, criterion, optimizer) # iterate all bags
test_loss_bag, avg_score, aucs, thresholds_optimal = test(args, test_path, milnet, criterion)
print_epoch_info(epoch, args, train_loss_bag, test_loss_bag, avg_score, aucs)
scheduler.step()
current_score = get_current_score(avg_score, aucs)
if current_score > fold_best_score:
counter = 0
fold_best_score = current_score
best_ac = avg_score
best_auc = aucs
save_model(args, fold, run, save_path, milnet, thresholds_optimal)
best_model = [copy.deepcopy(milnet.cpu()), thresholds_optimal]
milnet.cuda()
if counter > args.stop_epochs: break
fold_results.append((best_ac, best_auc))
fold_models.append(best_model)
fold_predictions = []
for item in fold_models:
best_model = item[0]
optimal_thresh = item[1]
test_loss_bag, avg_score, aucs, thresholds_optimal, test_predictions, test_labels = test(args, reserved_testing_bags, best_model.cuda(), criterion, thresholds=optimal_thresh, return_predictions=True)
fold_predictions.append(test_predictions)
predictions_stack = np.stack(fold_predictions, axis=0)
mode_result = mode(predictions_stack, axis=0)
combined_predictions = mode_result.mode[0]
combined_predictions = combined_predictions.squeeze()
if args.num_classes > 1:
# Compute Hamming Loss
hammingloss = hamming_loss(test_labels, combined_predictions)
print("Hamming Loss:", hammingloss)
# Compute Subset Accuracy
subset_accuracy = accuracy_score(test_labels, combined_predictions)
print("Subset Accuracy (Exact Match Ratio):", subset_accuracy)
else:
accuracy = accuracy_score(test_labels, combined_predictions)
print("Accuracy:", accuracy)
balanced_accuracy = balanced_accuracy_score(test_labels, combined_predictions)
print("Balanced Accuracy:", balanced_accuracy)
os.makedirs('test', exist_ok=True)
with open("test/test_list.json", "w") as file:
json.dump(reserved_testing_bags, file)
for i, item in enumerate(fold_models):
best_model = item[0]
optimal_thresh = item[1]
torch.save(best_model.state_dict(), f"test/mil_weights_fold_{i}.pth")
with open(f"test/mil_threshold_fold_{i}.json", "w") as file:
optimal_thresh = [float(i) for i in optimal_thresh]
json.dump(optimal_thresh, file)
if __name__ == '__main__':
main()