-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimutils.py
293 lines (223 loc) · 9.63 KB
/
simutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Public imports
from random import uniform
import pygal
# Private imports
from basicutils import *
from supergraphs import *
# Constants
SIR_SUSCEPTIBLE = 0
SIR_INFECTED = 1
SIR_RECOVERED = 2
SIR_COLORS = ["deeppink3", "forestgreen", "goldenrod1"]
IC_UNKNOWING = 0
IC_INFORMED = 1
IC_COLORS = ["floralwhite", "dodgerblue4"]
def doSIRSimulation(g, infectionVector, q, r, maxSteps = 1000, animate = False, chartFile = ""):
assert g.getNodeAmount() == len(infectionVector)
assert 0 <= q <= 1
assert 0 <= r <= 1
iv = infectionVector[:]
ivNext = [-1] * len(iv)
stats = []
if animate:
colors = [SIR_COLORS[x] for x in iv]
g.dumpToFile("{}.dot".format(nextFrame()), colors)
for t in range(maxSteps):
susceptibleAtT = sum([1 for i in iv if i == SIR_SUSCEPTIBLE])
infectedAtT = sum([1 for i in iv if i == SIR_INFECTED])
stats.append((susceptibleAtT, infectedAtT))
if infectedAtT == 0:
break;
for i, v in enumerate(iv):
if v == SIR_SUSCEPTIBLE:
if ivNext[i] == -1:
ivNext[i] = SIR_SUSCEPTIBLE
elif v == SIR_INFECTED:
if uniform(0, 1) <= r:
ivNext[i] = SIR_RECOVERED
else:
ivNext[i] = SIR_INFECTED
neighbours = g.getNeighbours(i)
for n in neighbours:
if iv[n] == SIR_SUSCEPTIBLE and uniform(0, 1) <= q:
ivNext[n] = SIR_INFECTED
elif v == SIR_RECOVERED:
ivNext[i] = v
iv = ivNext[:]
ivNext = [-1] * len(iv)
if animate:
colors = [SIR_COLORS[x] for x in iv]
g.dumpToFile("{}.dot".format(nextFrame()), colors)
if chartFile != "":
amountInitiallyInfected = sum([1 for v in infectionVector if v == SIR_INFECTED])
peakInfectionAmount = -1
peakInfectionT = -1
for t, (s, i) in enumerate(stats):
if i > peakInfectionAmount:
peakInfectionAmount = i
peakInfectionT = t
chart = pygal.Line(x_title="Timestep", y_title="Number of nodes", show_dots=False, x_labels_major_every=len(stats)//8, show_minor_x_labels=False, truncate_label=9999, style=pygal.style.LightStyle)
chart.title = "SIR model({}, {}). Infected {} nodes. Peak infection time: {}. Infection duration: {}".format(q, r, amountInitiallyInfected, peakInfectionT, len(result))
chart.x_labels = map(str, range(len(result)))
chart.add("Susceptible", [p[0] for p in stats])
chart.add("Infected", [p[1] for p in stats])
chart.add("Recovered", [g.getNodeAmount() - p[0] - p[1] for p in stats])
chart.render_to_file(chartFile)
return stats
def doSIRTopNInfectedSimulation(g, amountOfPatients, q, r, chartFile = "", maxSteps = 10000, animate = False):
assert g.getNodeAmount() > 0
assert 0 <= amountOfPatients < g.getNodeAmount()
assert maxSteps > 0
iv = [SIR_SUSCEPTIBLE] * g.getNodeAmount()
for p in g.getDegreeSortedNodes()[::-1][0:amountOfPatients]:
iv[p] = SIR_INFECTED;
result = doSIRSimulation(g, iv, q, r, maxSteps, animate = animate)
infectionAmount = [t[1] for t in result]
peakInfectionT = infectionAmount.index(max(infectionAmount))
if chartFile != "":
chart = pygal.Line(x_title="Timestep", y_title="Number of nodes", show_dots=False, x_labels_major_every=len(result)//8, show_minor_x_labels=False, truncate_label=9999, style=pygal.style.LightStyle)
chart.title = "SIR model({}, {}). Infected top {} nodes. Peak infection time: {}. Infection duration: {}".format(q, r, amountOfPatients, peakInfectionT, len(result))
chart.x_labels = map(str, range(len(result)))
chart.add("Susceptible", [p[0] for p in result])
chart.add("Infected", [p[1] for p in result])
chart.add("Recovered", [g.getNodeAmount() - p[0] - p[1] for p in result])
chart.render_to_file(chartFile)
return result
def doSIRSeries(fG, fiv, q, r, runs = 1000, chartFile = "", maxSteps = 10000):
g = fG()
iv = fiv(g)
assert len(iv) == g.getNodeAmount()
assert runs > 0
assert maxSteps > 0
totalLength = 0
totalPeakInfectionT = 0
avgInfectionTrend = [0]
avgSusceptibleTrend = [0]
totalMaxInfected = -1;
print("Started at: ", prettyNow())
start = time()
for i in range(runs):
g = fG()
iv = fiv(g)
result = doSIRSimulation(g, iv, q, r, maxSteps)
totalLength += len(result)
infectionAmount = [t[1] for t in result]
totalPeakInfectionT += infectionAmount.index(max(infectionAmount))
totalMaxInfected += max(infectionAmount)
if len(avgSusceptibleTrend) < len(result):
diff = len(result) - len(avgSusceptibleTrend)
avgSusceptibleTrend += [avgSusceptibleTrend[-1]] * diff
avgInfectionTrend += [avgInfectionTrend[-1]] * diff
for j, p in enumerate(result):
avgSusceptibleTrend[j] += p[0]/runs
avgInfectionTrend[j] += p[1]/runs
if len(result) < len(avgSusceptibleTrend):
lastSusceptibleVal = result[len(result) - 1][0]
lastInfectedVal = result[len(result) - 1][1]
for j in range(len(result), len(avgSusceptibleTrend)):
avgSusceptibleTrend[j] += lastSusceptibleVal / runs
avgInfectionTrend[j] += lastInfectedVal / runs
#if i % 10 == 0:
print("Iteration #", i)
end = time()
if chartFile != "":
chart = pygal.Line(x_title="Timestep", y_title="Number of nodes", show_dots=False, x_labels_major_every=len(avgSusceptibleTrend)//8, show_minor_x_labels=False, truncate_label=9999, style=pygal.style.LightStyle)
chart.title = "Average of {} simulations. SIR model({}, {}). {}. {}. Average peak infection time: {}. Average maximum infected: {}. Average infection duration: {}".format(runs, q, r, fG(""), fiv(""), totalPeakInfectionT//runs, totalMaxInfected//runs, totalLength//runs)
chart.x_labels = map(str, range(len(avgInfectionTrend)))
chart.add("Susceptible", avgSusceptibleTrend)
chart.add("Infected", avgInfectionTrend)
chart.add("Recovered", [g.getNodeAmount() - avgSusceptibleTrend[i] - avgInfectionTrend[i] for i in range(len(avgSusceptibleTrend))])
chart.render_to_file(chartFile)
print("Ended at: ", prettyNow())
print("Duration: ", int(end - start), " seconds")
return (totalLength, totalPeakInfectionT, avgInfectionTrend, avgSusceptibleTrend)
def doICSimulation(g, informationVector, alpha, maxSteps = 1000, animate = False):
assert g.getNodeAmount() == len(informationVector)
assert 0 <= alpha <= 1
iv = informationVector[:]
ivPrevious = iv[:]
ivNext = [-1] * len(informationVector)
stats = []
if animate:
colors = [IC_COLORS[x] for x in iv]
g.dumpToFile("{}.dot".format(nextFrame()), colors)
for t in range(maxSteps):
amountInformed = sum([1 for x in iv if x == IC_INFORMED])
stats.append(amountInformed)
for i, v in enumerate(iv):
if v == IC_UNKNOWING:
informedNeighboursFrac = sum([1 for n in g.getNeighbours(i) if iv[n] == IC_INFORMED]) / max(1, g.getNeighbourCount(i))
if informedNeighboursFrac >= alpha:
ivNext[i] = IC_INFORMED
else:
ivNext[i] = IC_UNKNOWING
elif v == IC_INFORMED:
ivNext[i] = IC_INFORMED
pass
ivPrevious = iv
iv = ivNext
ivNext = [-1] * len(iv)
if animate:
colors = [IC_COLORS[x] for x in iv]
g.dumpToFile("{}.dot".format(nextFrame()), colors)
if iv == ivPrevious:
break;
return stats
def doICTopNInfectionSimulation(g, amountOfPatients, alpha, maxSteps = 1000, chartFile = "", animate = False):
assert g.getNodeAmount() >= amountOfPatients
assert 0 <= alpha <= 1
assert maxSteps > 0
iv = [IC_UNKNOWING] * g.getNodeAmount()
for v in g.getDegreeSortedNodes()[::-1][0:amountOfPatients]:
iv[v] = IC_INFORMED
result = doICSimulation(g, iv, alpha, maxSteps, animate = animate)
if chartFile != "":
chart = pygal.Line(x_title="Timestep", y_title="Number of nodes", show_dots=False, x_labels_major_every=len(result)//8, show_minor_x_labels=False, truncate_label=9999, style=pygal.style.LightStyle)
chart.title = "Information Cascade model({}). Top {} infection. Infection duration: {}. Final information coverage: {}%.".format(alpha, amountOfPatients, len(result), int(result[-1]/g.getNodeAmount()*100))
chart.x_labels = map(str, range(len(result)))
chart.add("Informed", result)
chart.render_to_file(chartFile)
return result
def doICSeries(fG, fiv, alpha, runs = 1000, chartFile = "", maxSteps = 10000):
g = fG()
iv = fiv(g)
assert len(iv) == g.getNodeAmount()
assert runs > 0
assert maxSteps > 0
assert 0 <= alpha <= 1
totalLength = 0
avgInformedTrend = [0]
totalMaxInformed = 0
maxInformed = 0
print("Started at: ", prettyNow())
start = time()
for i in range(runs):
g = fG()
iv = fiv(g)
result = doICSimulation(g, iv, alpha, maxSteps)
totalLength += len(result)
informedAmount = result[-1]
maxInformed = max(maxInformed, informedAmount)
totalMaxInformed += informedAmount
if len(avgInformedTrend) < len(result):
diff = len(result) - len(avgInformedTrend)
avgInformedTrend += [avgInformedTrend[-1]] * diff
for j, k in enumerate(result):
avgInformedTrend[j] += k/runs
if len(result) < len(avgInformedTrend):
lastInformedVal = result[-1]
for j in range(len(result), len(avgInformedTrend)):
avgInformedTrend[j] += lastInformedVal / runs
#if i % 10 == 0:
print("Iteration #", i)
end = time()
if chartFile != "":
chart = pygal.Line(x_title="Timestep", y_title="Number of nodes", show_dots=False, x_labels_major_every=len(avgInformedTrend)//8, show_minor_x_labels=False, truncate_label=9999, style=pygal.style.LightStyle)
chart.title = "Average of {} simulations. IC model({}). {}. {}. Maximum informed: {}. Average maximum informed: {}. Average information duration: {}".format(runs, alpha, fG(""), fiv(""), maxInformed, totalMaxInformed//runs, totalLength//runs)
chart.x_labels = map(str, range(len(avgInformedTrend)))
chart.add("Informed", avgInformedTrend)
chart.add("Uninformed", [g.getNodeAmount() - avgInformedTrend[i] for i in range(len(avgInformedTrend))])
chart.render_to_file(chartFile)
print("Ended at: ", prettyNow())
print("Duration: ", int(end - start), " seconds")
return (totalLength, maxInformed, totalMaxInformed, avgInformedTrend)