-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun_training.py
66 lines (50 loc) · 2.01 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import keras
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier
from data_utils import load as load_data
from model import build_model
np.random.seed(42)
epochs = 16
batch_size = 64
model_path = './data/model.dat'
log_dir = './logs'
grid_search = False
if __name__ == '__main__':
# Load Twitter gender data
(X_train, y_train, X_test, y_test), _ = load_data('twitter_gender_data')
# Take a look at the shapes
print('X_train:', X_train.shape)
print('y_train:', y_train.shape)
print('X_test:', X_test.shape)
print('y_test:', y_test.shape)
if not grid_search:
tb_callback = keras.callbacks.TensorBoard(
log_dir=log_dir, histogram_freq=0, write_graph=True)
model = build_model()
model.fit(X_train, y_train,
validation_data=(X_test, y_test),
batch_size=batch_size, epochs=epochs,
callbacks=[tb_callback])
print('Saving model weights...')
model.save_weights(model_path)
else:
# Grid search with cross-validaton on training data set
keras_model = KerasClassifier(build_fn=build_model, verbose=0)
param_grid = {
'kernel_size': [2, 3],
'regularization': [0.01, 0.1, 0.2],
'weight_constraint': [1., 2., 3.],
'dropout_prob': [0.2, 0.4, 0.5, 0.6, 0.7],
'epochs': [12, 20],
'batch_size': [64, 128, 160]
}
grid = GridSearchCV(estimator=keras_model, param_grid=param_grid)
grid_result = grid.fit(X_train, y_train)
# Summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))