-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathmisc.hpp
1302 lines (1238 loc) · 54.8 KB
/
misc.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
///////////////////////////////////////////////////////////////
// Copyright 2012-2020 John Maddock.
// Copyright 2020 Madhur Chauhan.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Comparison operators for cpp_int_backend:
//
#ifndef BOOST_MP_CPP_INT_MISC_HPP
#define BOOST_MP_CPP_INT_MISC_HPP
#include <boost/multiprecision/detail/constexpr.hpp>
#include <boost/multiprecision/detail/bitscan.hpp> // lsb etc
#include <boost/multiprecision/detail/hash.hpp>
#include <boost/integer/common_factor_rt.hpp> // gcd/lcm
#include <numeric> // std::gcd
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4702)
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4146) // unary minus operator applied to unsigned type, result still unsigned
#endif
namespace boost { namespace multiprecision { namespace backends {
template <class T, bool has_limits = std::numeric_limits<T>::is_specialized>
struct numeric_limits_workaround : public std::numeric_limits<T>
{
};
template <class R>
struct numeric_limits_workaround<R, false>
{
static constexpr unsigned digits = ~static_cast<R>(0) < 0 ? sizeof(R) * CHAR_BIT - 1 : sizeof(R) * CHAR_BIT;
static constexpr R (min)(){ return (static_cast<R>(-1) < 0) ? static_cast<R>(1) << digits : 0; }
static constexpr R (max)() { return (static_cast<R>(-1) < 0) ? ~(static_cast<R>(1) << digits) : ~static_cast<R>(0); }
};
template <class R, class CppInt>
BOOST_MP_CXX14_CONSTEXPR void check_in_range(const CppInt& val, const std::integral_constant<int, checked>&)
{
using cast_type = typename boost::multiprecision::detail::canonical<R, CppInt>::type;
if (val.sign())
{
BOOST_IF_CONSTEXPR (boost::multiprecision::detail::is_signed<R>::value == false)
BOOST_THROW_EXCEPTION(std::range_error("Attempt to assign a negative value to an unsigned type."));
if (val.compare(static_cast<cast_type>((numeric_limits_workaround<R>::min)())) < 0)
BOOST_THROW_EXCEPTION(std::overflow_error("Could not convert to the target type - -value is out of range."));
}
else
{
if (val.compare(static_cast<cast_type>((numeric_limits_workaround<R>::max)())) > 0)
BOOST_THROW_EXCEPTION(std::overflow_error("Could not convert to the target type - -value is out of range."));
}
}
template <class R, class CppInt>
inline BOOST_MP_CXX14_CONSTEXPR void check_in_range(const CppInt& /*val*/, const std::integral_constant<int, unchecked>&) noexcept {}
inline BOOST_MP_CXX14_CONSTEXPR void check_is_negative(const std::integral_constant<bool, true>&) noexcept {}
inline void check_is_negative(const std::integral_constant<bool, false>&)
{
BOOST_THROW_EXCEPTION(std::range_error("Attempt to assign a negative value to an unsigned type."));
}
template <class Integer>
inline BOOST_MP_CXX14_CONSTEXPR Integer negate_integer(Integer i, const std::integral_constant<bool, true>&) noexcept
{
return -i;
}
template <class Integer>
inline BOOST_MP_CXX14_CONSTEXPR Integer negate_integer(Integer i, const std::integral_constant<bool, false>&) noexcept
{
return ~(i - 1);
}
template <class R, unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<R>::value && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, void>::type
eval_convert_to(R* result, const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& backend)
{
using checked_type = std::integral_constant<int, Checked1>;
check_in_range<R>(backend, checked_type());
BOOST_IF_CONSTEXPR(numeric_limits_workaround<R>::digits < cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits)
{
if ((backend.sign() && boost::multiprecision::detail::is_signed<R>::value && boost::multiprecision::detail::is_integral<R>::value) && (1 + static_cast<boost::multiprecision::limb_type>((std::numeric_limits<R>::max)()) <= backend.limbs()[0]))
{
*result = (numeric_limits_workaround<R>::min)();
return;
}
else if (boost::multiprecision::detail::is_signed<R>::value && boost::multiprecision::detail::is_integral<R>::value && !backend.sign() && static_cast<boost::multiprecision::limb_type>((std::numeric_limits<R>::max)()) <= backend.limbs()[0])
{
*result = (numeric_limits_workaround<R>::max)();
return;
}
else
*result = static_cast<R>(backend.limbs()[0]);
}
else
*result = static_cast<R>(backend.limbs()[0]);
unsigned shift = cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
unsigned i = 1;
BOOST_IF_CONSTEXPR(numeric_limits_workaround<R>::digits > cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits)
{
while ((i < backend.size()) && (shift < static_cast<unsigned>(numeric_limits_workaround<R>::digits - cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits)))
{
*result += static_cast<R>(backend.limbs()[i]) << shift;
shift += cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
++i;
}
//
// We have one more limb to extract, but may not need all the bits, so treat this as a special case:
//
if (i < backend.size())
{
const limb_type mask = numeric_limits_workaround<R>::digits - shift == cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits ? ~static_cast<limb_type>(0) : (static_cast<limb_type>(1u) << (numeric_limits_workaround<R>::digits - shift)) - 1;
*result += (static_cast<R>(backend.limbs()[i]) & mask) << shift;
if ((static_cast<R>(backend.limbs()[i]) & static_cast<limb_type>(~mask)) || (i + 1 < backend.size()))
{
// Overflow:
if (backend.sign())
{
check_is_negative(boost::multiprecision::detail::is_signed<R>());
*result = (numeric_limits_workaround<R>::min)();
}
else if (boost::multiprecision::detail::is_signed<R>::value)
*result = (numeric_limits_workaround<R>::max)();
return;
}
}
}
else if (backend.size() > 1)
{
// Overflow:
if (backend.sign())
{
check_is_negative(boost::multiprecision::detail::is_signed<R>());
*result = (numeric_limits_workaround<R>::min)();
}
else if (boost::multiprecision::detail::is_signed<R>::value)
*result = (numeric_limits_workaround<R>::max)();
return;
}
if (backend.sign())
{
check_is_negative(std::integral_constant<bool, boost::multiprecision::detail::is_signed<R>::value && boost::multiprecision::detail::is_integral<R>::value>());
*result = negate_integer(*result, std::integral_constant<bool, boost::multiprecision::detail::is_signed<R>::value && boost::multiprecision::detail::is_integral<R>::value>());
}
}
template <class R, unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<std::is_floating_point<R>::value && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, void>::type
eval_convert_to(R* result, const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& backend) noexcept(boost::multiprecision::detail::is_arithmetic<R>::value)
{
typename cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::const_limb_pointer p = backend.limbs();
unsigned shift = cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
*result = static_cast<R>(*p);
for (unsigned i = 1; i < backend.size(); ++i)
{
*result += static_cast<R>(std::ldexp(static_cast<long double>(p[i]), shift));
shift += cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
}
if (backend.sign())
*result = -*result;
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, bool>::type
eval_is_zero(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val) noexcept
{
return (val.size() == 1) && (val.limbs()[0] == 0);
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, int>::type
eval_get_sign(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val) noexcept
{
return eval_is_zero(val) ? 0 : val.sign() ? -1 : 1;
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_abs(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result, const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val) noexcept((is_non_throwing_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value))
{
result = val;
result.sign(false);
}
//
// Get the location of the least-significant-bit:
//
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, unsigned>::type
eval_lsb(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a)
{
using default_ops::eval_get_sign;
if (eval_get_sign(a) == 0)
{
BOOST_THROW_EXCEPTION(std::domain_error("No bits were set in the operand."));
}
if (a.sign())
{
BOOST_THROW_EXCEPTION(std::domain_error("Testing individual bits in negative values is not supported - results are undefined."));
}
//
// Find the index of the least significant limb that is non-zero:
//
unsigned index = 0;
while (!a.limbs()[index] && (index < a.size()))
++index;
//
// Find the index of the least significant bit within that limb:
//
unsigned result = boost::multiprecision::detail::find_lsb(a.limbs()[index]);
return result + index * cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
}
//
// Get the location of the most-significant-bit:
//
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, unsigned>::type
eval_msb_imp(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a)
{
//
// Find the index of the most significant bit that is non-zero:
//
return (a.size() - 1) * cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits + boost::multiprecision::detail::find_msb(a.limbs()[a.size() - 1]);
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, unsigned>::type
eval_msb(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a)
{
using default_ops::eval_get_sign;
if (eval_get_sign(a) == 0)
{
BOOST_THROW_EXCEPTION(std::domain_error("No bits were set in the operand."));
}
if (a.sign())
{
BOOST_THROW_EXCEPTION(std::domain_error("Testing individual bits in negative values is not supported - results are undefined."));
}
return eval_msb_imp(a);
}
#ifdef BOOST_GCC
//
// We really shouldn't need to be disabling this warning, but it really does appear to be
// spurious. The warning appears only when in release mode, and asserts are on.
//
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, bool>::type
eval_bit_test(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val, unsigned index) noexcept
{
unsigned offset = index / cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
unsigned shift = index % cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
limb_type mask = shift ? limb_type(1u) << shift : limb_type(1u);
if (offset >= val.size())
return false;
return val.limbs()[offset] & mask ? true : false;
}
#ifdef BOOST_GCC
#pragma GCC diagnostic pop
#endif
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_bit_set(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val, unsigned index)
{
unsigned offset = index / cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
unsigned shift = index % cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
limb_type mask = shift ? limb_type(1u) << shift : limb_type(1u);
if (offset >= val.size())
{
unsigned os = val.size();
val.resize(offset + 1, offset + 1);
if (offset >= val.size())
return; // fixed precision overflow
for (unsigned i = os; i <= offset; ++i)
val.limbs()[i] = 0;
}
val.limbs()[offset] |= mask;
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_bit_unset(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val, unsigned index) noexcept
{
unsigned offset = index / cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
unsigned shift = index % cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
limb_type mask = shift ? limb_type(1u) << shift : limb_type(1u);
if (offset >= val.size())
return;
val.limbs()[offset] &= ~mask;
val.normalize();
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_bit_flip(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& val, unsigned index)
{
unsigned offset = index / cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
unsigned shift = index % cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>::limb_bits;
limb_type mask = shift ? limb_type(1u) << shift : limb_type(1u);
if (offset >= val.size())
{
unsigned os = val.size();
val.resize(offset + 1, offset + 1);
if (offset >= val.size())
return; // fixed precision overflow
for (unsigned i = os; i <= offset; ++i)
val.limbs()[i] = 0;
}
val.limbs()[offset] ^= mask;
val.normalize();
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_qr(
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& x,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& y,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& q,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& r) noexcept((is_non_throwing_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value))
{
divide_unsigned_helper(&q, x, y, r);
q.sign(x.sign() != y.sign());
r.sign(x.sign());
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_qr(
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& x,
limb_type y,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& q,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& r) noexcept((is_non_throwing_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value))
{
divide_unsigned_helper(&q, x, y, r);
q.sign(x.sign());
r.sign(x.sign());
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class U>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<U>::value>::type eval_qr(
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& x,
U y,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& q,
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& r) noexcept((is_non_throwing_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value))
{
using default_ops::eval_qr;
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t;
t = y;
eval_qr(x, t, q, r);
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Integer>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_unsigned<Integer>::value && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, Integer>::type
eval_integer_modulus(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a, Integer mod)
{
BOOST_IF_CONSTEXPR (sizeof(Integer) <= sizeof(limb_type))
{
if (mod <= (std::numeric_limits<limb_type>::max)())
{
const int n = a.size();
const double_limb_type two_n_mod = static_cast<limb_type>(1u) + (~static_cast<limb_type>(0u) - mod) % mod;
limb_type res = a.limbs()[n - 1] % mod;
for (int i = n - 2; i >= 0; --i)
res = static_cast<limb_type>((res * two_n_mod + a.limbs()[i]) % mod);
return res;
}
else
return default_ops::eval_integer_modulus(a, mod);
}
else
{
return default_ops::eval_integer_modulus(a, mod);
}
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Integer>
BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_signed<Integer>::value && boost::multiprecision::detail::is_integral<Integer>::value && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value, Integer>::type
eval_integer_modulus(const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& x, Integer val)
{
return eval_integer_modulus(x, boost::multiprecision::detail::unsigned_abs(val));
}
BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR limb_type eval_gcd(limb_type u, limb_type v)
{
// boundary cases
if (!u || !v)
return u | v;
#if __cpp_lib_gcd_lcm >= 201606L
return std::gcd(u, v);
#else
unsigned shift = boost::multiprecision::detail::find_lsb(u | v);
u >>= boost::multiprecision::detail::find_lsb(u);
do
{
v >>= boost::multiprecision::detail::find_lsb(v);
if (u > v)
std_constexpr::swap(u, v);
v -= u;
} while (v);
return u << shift;
#endif
}
inline BOOST_MP_CXX14_CONSTEXPR double_limb_type eval_gcd(double_limb_type u, double_limb_type v)
{
#if 0 && (__cpp_lib_gcd_lcm >= 201606L) && (!defined(BOOST_HAS_INT128) || !defined(__STRICT_ANSI__))
return std::gcd(u, v);
#else
if (u == 0)
return v;
unsigned shift = boost::multiprecision::detail::find_lsb(u | v);
u >>= boost::multiprecision::detail::find_lsb(u);
do
{
v >>= boost::multiprecision::detail::find_lsb(v);
if (u > v)
std_constexpr::swap(u, v);
v -= u;
} while (v);
return u << shift;
#endif
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
limb_type b)
{
int s = eval_get_sign(a);
if (!b || !s)
{
result = a;
*result.limbs() |= b;
}
else
{
eval_modulus(result, a, b);
limb_type& res = *result.limbs();
res = eval_gcd(res, b);
}
result.sign(false);
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
double_limb_type b)
{
int s = eval_get_sign(a);
if (!b || !s)
{
if (!s)
result = b;
else
result = a;
return;
}
double_limb_type res = 0;
if(a.sign() == 0)
res = eval_integer_modulus(a, b);
else
{
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t(a);
t.negate();
res = eval_integer_modulus(t, b);
}
res = eval_gcd(res, b);
result = res;
result.sign(false);
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
signed_double_limb_type v)
{
eval_gcd(result, a, static_cast<double_limb_type>(v < 0 ? -v : v));
}
//
// These 2 overloads take care of gcd against an (unsigned) short etc:
//
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Integer>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_unsigned<Integer>::value && (sizeof(Integer) <= sizeof(limb_type)) && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
const Integer& v)
{
eval_gcd(result, a, static_cast<limb_type>(v));
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Integer>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_signed<Integer>::value && boost::multiprecision::detail::is_integral<Integer>::value && (sizeof(Integer) <= sizeof(limb_type)) && !is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
const Integer& v)
{
eval_gcd(result, a, static_cast<limb_type>(v < 0 ? -v : v));
}
//
// What follows is Lehmer's GCD algorithm:
// Essentially this uses the leading digit(s) of U and V
// only to run a "simulated" Euclid algorithm. It stops
// when the calculated quotient differs from what would have been
// the true quotient. At that point the cosequences are used to
// calculate the new U and V. A nice lucid description appears
// in "An Analysis of Lehmer's Euclidean GCD Algorithm",
// by Jonathan Sorenson. https://www.researchgate.net/publication/2424634_An_Analysis_of_Lehmer%27s_Euclidean_GCD_Algorithm
// DOI: 10.1145/220346.220378.
//
// There are two versions of this algorithm here, and both are "double digit"
// variations: which is to say if there are k bits per limb, then they extract
// 2k bits into a double_limb_type and then run the algorithm on that. The first
// version is a straightforward version of the algorithm, and is designed for
// situations where double_limb_type is a native integer (for example where
// limb_type is a 32-bit integer on a 64-bit machine). For 32-bit limbs it
// reduces the size of U by about 30 bits per call. The second is a more complex
// version for situations where double_limb_type is a synthetic type: for example
// __int128. For 64 bit limbs it reduces the size of U by about 62 bits per call.
//
// The complexity of the algorithm given by Sorenson is roughly O(ln^2(N)) for
// two N bit numbers.
//
// The original double-digit version of the algorithm is described in:
//
// "A Double Digit Lehmer-Euclid Algorithm for Finding the GCD of Long Integers",
// Tudor Jebelean, J Symbolic Computation, 1995 (19), 145.
//
#ifndef BOOST_HAS_INT128
//
// When double_limb_type is a native integer type then we should just use it and not worry about the consequences.
// This can eliminate approximately a full limb with each call.
//
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Storage>
void eval_gcd_lehmer(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& U, cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& V, unsigned lu, Storage& storage)
{
//
// Extract the leading 2 * bits_per_limb bits from U and V:
//
unsigned h = lu % bits_per_limb;
double_limb_type u = (static_cast<double_limb_type>((U.limbs()[U.size() - 1])) << bits_per_limb) | U.limbs()[U.size() - 2];
double_limb_type v = (static_cast<double_limb_type>((V.size() < U.size() ? 0 : V.limbs()[V.size() - 1])) << bits_per_limb) | V.limbs()[U.size() - 2];
if (h)
{
u <<= bits_per_limb - h;
u |= U.limbs()[U.size() - 3] >> h;
v <<= bits_per_limb - h;
v |= V.limbs()[U.size() - 3] >> h;
}
//
// Co-sequences x an y: we need only the last 3 values of these,
// the first 2 values are known correct, the third gets checked
// in each loop operation, and we terminate when they go wrong.
//
// x[i+0] is positive for even i.
// y[i+0] is positive for odd i.
//
// However we track only absolute values here:
//
double_limb_type x[3] = {1, 0};
double_limb_type y[3] = {0, 1};
unsigned i = 0;
#ifdef BOOST_MP_GCD_DEBUG
cpp_int UU, VV;
UU = U;
VV = V;
#endif
while (true)
{
double_limb_type q = u / v;
x[2] = x[0] + q * x[1];
y[2] = y[0] + q * y[1];
double_limb_type tu = u;
u = v;
v = tu - q * v;
++i;
//
// We must make sure that y[2] occupies a single limb otherwise
// the multiprecision multiplications below would be much more expensive.
// This can sometimes lose us one iteration, but is worth it for improved
// calculation efficiency.
//
if (y[2] >> bits_per_limb)
break;
//
// These are Jebelean's exact termination conditions:
//
if ((i & 1u) == 0)
{
BOOST_ASSERT(u > v);
if ((v < x[2]) || ((u - v) < (y[2] + y[1])))
break;
}
else
{
BOOST_ASSERT(u > v);
if ((v < y[2]) || ((u - v) < (x[2] + x[1])))
break;
}
#ifdef BOOST_MP_GCD_DEBUG
BOOST_ASSERT(q == UU / VV);
UU %= VV;
UU.swap(VV);
#endif
x[0] = x[1];
x[1] = x[2];
y[0] = y[1];
y[1] = y[2];
}
if (i == 1)
{
// No change to U and V we've stalled!
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t;
eval_modulus(t, U, V);
U.swap(V);
V.swap(t);
return;
}
//
// Update U and V.
// We have:
//
// U = x[0]U + y[0]V and
// V = x[1]U + y[1]V.
//
// But since we track only absolute values of x and y
// we have to take account of the implied signs and perform
// the appropriate subtraction depending on the whether i is
// even or odd:
//
unsigned ts = U.size() + 1;
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t1(storage, ts), t2(storage, ts), t3(storage, ts);
eval_multiply(t1, U, static_cast<limb_type>(x[0]));
eval_multiply(t2, V, static_cast<limb_type>(y[0]));
eval_multiply(t3, U, static_cast<limb_type>(x[1]));
if ((i & 1u) == 0)
{
if (x[0] == 0)
U = t2;
else
{
BOOST_ASSERT(t2.compare(t1) >= 0);
eval_subtract(U, t2, t1);
BOOST_ASSERT(U.sign() == false);
}
}
else
{
BOOST_ASSERT(t1.compare(t2) >= 0);
eval_subtract(U, t1, t2);
BOOST_ASSERT(U.sign() == false);
}
eval_multiply(t2, V, static_cast<limb_type>(y[1]));
if (i & 1u)
{
if (x[1] == 0)
V = t2;
else
{
BOOST_ASSERT(t2.compare(t3) >= 0);
eval_subtract(V, t2, t3);
BOOST_ASSERT(V.sign() == false);
}
}
else
{
BOOST_ASSERT(t3.compare(t2) >= 0);
eval_subtract(V, t3, t2);
BOOST_ASSERT(V.sign() == false);
}
BOOST_ASSERT(U.compare(V) >= 0);
BOOST_ASSERT(lu > eval_msb(U));
#ifdef BOOST_MP_GCD_DEBUG
BOOST_ASSERT(UU == U);
BOOST_ASSERT(VV == V);
extern unsigned total_lehmer_gcd_calls;
extern unsigned total_lehmer_gcd_bits_saved;
extern unsigned total_lehmer_gcd_cycles;
++total_lehmer_gcd_calls;
total_lehmer_gcd_bits_saved += lu - eval_msb(U);
total_lehmer_gcd_cycles += i;
#endif
if (lu < 2048)
{
//
// Since we have stripped all common powers of 2 from U and V at the start
// if either are even at this point, we can remove stray powers of 2 now.
// Note that it is not possible for *both* U and V to be even at this point.
//
// This has an adverse effect on performance for high bit counts, but has
// a significant positive effect for smaller counts.
//
if ((U.limbs()[0] & 1u) == 0)
{
eval_right_shift(U, eval_lsb(U));
if (U.compare(V) < 0)
U.swap(V);
}
else if ((V.limbs()[0] & 1u) == 0)
{
eval_right_shift(V, eval_lsb(V));
}
}
storage.deallocate(ts * 3);
}
#else
//
// This branch is taken when double_limb_type is a synthetic type with no native hardware support.
// For example __int128. The assumption is that add/subtract/multiply of double_limb_type are efficient,
// but that division is very slow.
//
// We begin with a specialized routine for division.
// We know that u > v > ~limb_type(0), and therefore
// that the result will fit into a single limb_type.
// We also know that most of the time this is called the result will be 1.
// For small limb counts, this almost doubles the performance of Lehmer's routine!
//
BOOST_FORCEINLINE void divide_subtract(limb_type& q, double_limb_type& u, const double_limb_type& v)
{
BOOST_ASSERT(q == 1); // precondition on entry.
u -= v;
while (u >= v)
{
u -= v;
if (++q > 30)
{
limb_type t = u / v;
u -= t * v;
q += t;
}
}
}
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1, class Storage>
void eval_gcd_lehmer(cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& U, cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& V, unsigned lu, Storage& storage)
{
//
// Extract the leading 2*bits_per_limb bits from U and V:
//
unsigned h = lu % bits_per_limb;
double_limb_type u, v;
if (h)
{
u = (static_cast<double_limb_type>((U.limbs()[U.size() - 1])) << bits_per_limb) | U.limbs()[U.size() - 2];
v = (static_cast<double_limb_type>((V.size() < U.size() ? 0 : V.limbs()[V.size() - 1])) << bits_per_limb) | V.limbs()[U.size() - 2];
u <<= bits_per_limb - h;
u |= U.limbs()[U.size() - 3] >> h;
v <<= bits_per_limb - h;
v |= V.limbs()[U.size() - 3] >> h;
}
else
{
u = (static_cast<double_limb_type>(U.limbs()[U.size() - 1]) << bits_per_limb) | U.limbs()[U.size() - 2];
v = (static_cast<double_limb_type>(V.limbs()[U.size() - 1]) << bits_per_limb) | V.limbs()[U.size() - 2];
}
//
// Cosequences are stored as limb_types, we take care not to overflow these:
//
// x[i+0] is positive for even i.
// y[i+0] is positive for odd i.
//
// However we track only absolute values here:
//
limb_type x[3] = { 1, 0 };
limb_type y[3] = { 0, 1 };
unsigned i = 0;
#ifdef BOOST_MP_GCD_DEBUG
cpp_int UU, VV;
UU = U;
VV = V;
#endif
//
// We begine by running a single digit version of Lehmer's algorithm, we still have
// to track u and v at double precision, but this adds only a tiny performance penalty.
// What we gain is fast division, and fast termination testing.
// When you see static_cast<limb_type>(u >> bits_per_limb) here, this is really just
// a direct access to the upper bits_per_limb of the double limb type. For __int128
// this is simple a load of the upper 64 bits and the "shift" is optimised away.
//
double_limb_type old_u, old_v;
while (true)
{
limb_type q = static_cast<limb_type>(u >> bits_per_limb) / static_cast<limb_type>(v >> bits_per_limb);
x[2] = x[0] + q * x[1];
y[2] = y[0] + q * y[1];
double_limb_type tu = u;
old_u = u;
old_v = v;
u = v;
double_limb_type t = q * v;
if (tu < t)
{
++i;
break;
}
v = tu - t;
++i;
BOOST_ASSERT((u <= v) || (t / q == old_v));
if (u <= v)
{
// We've gone terribly wrong, probably numeric overflow:
break;
}
if ((i & 1u) == 0)
{
if ((static_cast<limb_type>(v >> bits_per_limb) < x[2]) || ((static_cast<limb_type>(u >> bits_per_limb) - static_cast<limb_type>(v >> bits_per_limb)) < (y[2] + y[1])))
break;
}
else
{
if ((static_cast<limb_type>(v >> bits_per_limb) < y[2]) || ((static_cast<limb_type>(u >> bits_per_limb) - static_cast<limb_type>(v >> bits_per_limb)) < (x[2] + x[1])))
break;
}
#ifdef BOOST_MP_GCD_DEBUG
BOOST_ASSERT(q == UU / VV);
UU %= VV;
UU.swap(VV);
#endif
x[0] = x[1];
x[1] = x[2];
y[0] = y[1];
y[1] = y[2];
}
//
// We get here when the single digit algorithm has gone wrong, back up i, u and v:
//
--i;
u = old_u;
v = old_v;
//
// Now run the full double-digit algorithm:
//
while (true)
{
limb_type q = 1;
double_limb_type tt = u;
divide_subtract(q, u, v);
std::swap(u, v);
tt = y[0] + q * static_cast<double_limb_type>(y[1]);
//
// If calculation of y[2] would overflow a single limb, then we *must* terminate.
// Note that x[2] < y[2] so there is no need to check that as well:
//
if (tt >> bits_per_limb)
{
++i;
break;
}
x[2] = x[0] + q * x[1];
y[2] = tt;
++i;
if ((i & 1u) == 0)
{
BOOST_ASSERT(u > v);
if ((v < x[2]) || ((u - v) < (static_cast<double_limb_type>(y[2]) + y[1])))
break;
}
else
{
BOOST_ASSERT(u > v);
if ((v < y[2]) || ((u - v) < (static_cast<double_limb_type>(x[2]) + x[1])))
break;
}
#ifdef BOOST_MP_GCD_DEBUG
BOOST_ASSERT(q == UU / VV);
UU %= VV;
UU.swap(VV);
#endif
x[0] = x[1];
x[1] = x[2];
y[0] = y[1];
y[1] = y[2];
}
if (i == 1)
{
// No change to U and V we've stalled!
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t;
eval_modulus(t, U, V);
U.swap(V);
V.swap(t);
return;
}
//
// Update U and V.
// We have:
//
// U = x[0]U + y[0]V and
// V = x[1]U + y[1]V.
//
// But since we track only absolute values of x and y
// we have to take account of the implied signs and perform
// the appropriate subtraction depending on the whether i is
// even or odd:
//
unsigned ts = U.size() + 1;
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> t1(storage, ts), t2(storage, ts), t3(storage, ts);
eval_multiply(t1, U, x[0]);
eval_multiply(t2, V, y[0]);
eval_multiply(t3, U, x[1]);
if ((i & 1u) == 0)
{
if (x[0] == 0)
U = t2;
else
{
BOOST_ASSERT(t2.compare(t1) >= 0);
eval_subtract(U, t2, t1);
BOOST_ASSERT(U.sign() == false);
}
}
else
{
BOOST_ASSERT(t1.compare(t2) >= 0);
eval_subtract(U, t1, t2);
BOOST_ASSERT(U.sign() == false);
}
eval_multiply(t2, V, y[1]);
if (i & 1u)
{
if (x[1] == 0)
V = t2;
else
{
BOOST_ASSERT(t2.compare(t3) >= 0);
eval_subtract(V, t2, t3);
BOOST_ASSERT(V.sign() == false);
}
}
else
{
BOOST_ASSERT(t3.compare(t2) >= 0);
eval_subtract(V, t3, t2);
BOOST_ASSERT(V.sign() == false);
}
BOOST_ASSERT(U.compare(V) >= 0);
BOOST_ASSERT(lu > eval_msb(U));
#ifdef BOOST_MP_GCD_DEBUG
BOOST_ASSERT(UU == U);
BOOST_ASSERT(VV == V);
extern unsigned total_lehmer_gcd_calls;
extern unsigned total_lehmer_gcd_bits_saved;
extern unsigned total_lehmer_gcd_cycles;
++total_lehmer_gcd_calls;
total_lehmer_gcd_bits_saved += lu - eval_msb(U);
total_lehmer_gcd_cycles += i;
#endif
if (lu < 2048)
{
//
// Since we have stripped all common powers of 2 from U and V at the start
// if either are even at this point, we can remove stray powers of 2 now.
// Note that it is not possible for *both* U and V to be even at this point.
//
// This has an adverse effect on performance for high bit counts, but has
// a significant positive effect for smaller counts.
//
if ((U.limbs()[0] & 1u) == 0)
{
eval_right_shift(U, eval_lsb(U));
if (U.compare(V) < 0)
U.swap(V);
}
else if ((V.limbs()[0] & 1u) == 0)
{
eval_right_shift(V, eval_lsb(V));
}
}
storage.deallocate(ts * 3);
}
#endif