forked from haebeom-lee/l2b
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
139 lines (120 loc) · 4.84 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import tensorflow as tf
from layers import *
# inference network for generating the three balancing variables
class InferenceNetwork:
def __init__(self, args):
if args.id_dataset[0] == 'cifar' or len(args.id_dataset) > 1:
self.xdim, self.input_channel, self.n_channel = 32, 3, 32
elif args.id_dataset[0] == 'mimgnet':
self.xdim, self.input_channel, self.n_channel = 84, 3, 32
else:
raise ValueError("Invalid in-dist. dataset: %s" % args.id_dataset)
self.numclass = args.way
self.max_shot = args.max_shot
# turn on/off the balancing variables
self.z_on = args.z_on
self.gamma_on = args.gamma_on
self.omega_on = args.omega_on
self.s_on = True if len(args.id_dataset) > 1 else False
# Compute element-wise sample mean, var., and set cardinality
# then, return the concatenation of them.
def _statistics_pooling(self, x, N):
mean, var = tf.nn.moments(x, 0)
N = tf.tile(tf.reshape(N, [-1]), mean.shape.as_list())
return tf.stack([mean, var, N], 1)
# compute the posterior of balancing variables
def get_posterior(self, inputs, name='encoder', reuse=None):
x, y = inputs
# encoder 1
x = tf.reshape(x, [-1, self.xdim, self.xdim, self.input_channel])
x = conv(x, 10, name=name+'/conv1', reuse=reuse)
x = relu(x)
x = pool(x)
x = conv(x, 10, name=name+'/conv2', reuse=reuse)
x = relu(x)
x = pool(x)
x = flatten(x)
x = dense(x, 64, name=name+'/dense1', reuse=reuse)
# statistics pooling 1
ysum = tf.reduce_sum(y, 1)
y_ = tf.argmax(y, 1)
s = []; N_c_list = []
for c in range(self.numclass):
idx_c = tf.logical_and(tf.equal(y_,c), tf.greater(ysum, 0))
x_c = tf.boolean_mask(x, idx_c) # x's corresponding to class c
y_c = tf.boolean_mask(y, idx_c)
N_c = (tf.reduce_sum(y_c)-1.)/(self.max_shot-1.) # normalized set size
N_c_list.append(N_c)
s_c = self._statistics_pooling(x_c, N=N_c)
s.append(s_c)
s = tf.stack(s, 0)
s = dense(s, 4, name=name+'/interact1', reuse=reuse)
s = relu(s)
s = tf.reshape(s, [self.numclass, -1])
# encoder 2
v = dense(s, 128, name=name+'/dense2', reuse=reuse)
v = relu(v)
v = dense(v, 32, name=name+'/dense3', reuse=reuse)
# statistics pooling 2
v = self._statistics_pooling(v, N=tf.reduce_mean(N_c_list))
v = tf.expand_dims(v, 0)
v = dense(v, 4, name=name+'/interact2', reuse=reuse)
v = relu(v)
v = tf.reshape(v, [1, -1])
# generate omega (from statistics pooling 1)
s1 = dense(s, 64, name=name+'/dense_omega', reuse=reuse)
s1 = relu(s1)
odim = 1
s_o = s if self.s_on else s1
mu_omega = dense(s_o, odim, name=name+'/mu_omega', reuse=reuse)
sigma_omega = dense(s_o, odim, name=name+'/sigma_omega', reuse=reuse)
mu_omega, sigma_omega = tf.squeeze(mu_omega), tf.squeeze(sigma_omega)
q_omega = normal(mu_omega, softplus(sigma_omega))
# generate gamma (from statistics pooling 2)
v1 = dense(v, 64, name=name+'/dense_gamma', reuse=reuse)
v1 = relu(v1)
gdim = 5
mu_gamma = dense(v1, gdim, name=name+'/mu_gamma', reuse=reuse)
sigma_gamma = dense(v1, gdim, name=name+'/sigma_gamma', reuse=reuse)
mu_gamma, sigma_gamma = tf.squeeze(mu_gamma), tf.squeeze(sigma_gamma)
q_gamma = normal(mu_gamma, softplus(sigma_gamma))
# generate z (from statistics pooling 2)
v2 = dense(v, 64, name=name+'/dense_z', reuse=reuse)
v2 = relu(v2)
zdim = 2*self.n_channel*4
mu_z = dense(v2, zdim, name=name+'/mu_z', reuse=reuse)
sigma_z = dense(v2, zdim, name=name+'/sigma_z', reuse=reuse)
mu_z, sigma_z = tf.squeeze(mu_z), tf.squeeze(sigma_z)
q_z = normal(mu_z, softplus(sigma_z))
return q_omega, q_gamma, q_z
def forward(self, inputs, sample, reuse=None):
# compute posterior
q_omega, q_gamma, q_z = self.get_posterior(inputs, reuse=reuse)
# compute kl
kl_omega = tf.reduce_sum(kl_diagnormal_stdnormal(q_omega))
kl_gamma = tf.reduce_sum(kl_diagnormal_stdnormal(q_gamma))
kl_z = tf.reduce_sum(kl_diagnormal_stdnormal(q_z))
# sample variables from the posterior
omega, gamma, z = None, None, None
kl = 0.
if self.omega_on:
kl = kl + kl_omega
omega = q_omega.sample() if sample else q_omega.mean()
if self.gamma_on:
kl = kl + kl_gamma
g_ = q_gamma.sample() if sample else q_gamma.mean()
g_ = tf.split(g_, [1,1,1,1,1], 0)
gamma = {}
for l in [1,2,3,4]:
gamma['conv%d_w'%l] = gamma['conv%d_b'%l] = g_[l-1]
gamma['dense_w'] = gamma['dense_b'] = g_[4]
if self.z_on:
kl = kl + kl_z
z_ = q_z.sample() if sample else q_z.mean()
zw_ = tf.split(z_[:self.n_channel*4], [self.n_channel]*4, 0)
zb_ = tf.split(z_[self.n_channel*4:], [self.n_channel]*4, 0)
z = {}
for l in [1,2,3,4]:
z['conv%d_w'%l] = zw_[l-1]
z['conv%d_b'%l] = zb_[l-1]
return omega, gamma, z, kl