forked from haebeom-lee/l2b
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
86 lines (75 loc) · 2.23 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from accumulator import Accumulator
import numpy as np
import tensorflow as tf
def str2list(s):
return s.replace(" ","").split(',')
# for gradient clipping
def get_train_op(optim, loss, global_step=None, clip=None, var_list=None):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
grad_and_vars = optim.compute_gradients(loss, var_list=var_list)
if clip is not None:
grad_and_vars = [((None if grad is None \
else tf.clip_by_value(grad, clip[0], clip[1])), var) \
for grad, var in grad_and_vars]
train_op = optim.apply_gradients(grad_and_vars, global_step=global_step)
return train_op
def print_balancing_variables(
args, flag, episode, ntask, omega, gamma, logfile):
line = '\n%s '%(flag)
print(line)
logfile.write(line + '\n')
# index sorting according to task size
y = episode[1]
n = []
for t in range(ntask):
y_t = y[t]
y_t = y_t[np.sum(y_t,1)==1]
n.append(y_t.shape[0])
n = np.stack(n)
idx = np.argsort(n)
if args.gamma_on:
line = '\n*** Gamma for task imbalance ***'
print(line)
logfile.write(line + '\n')
line = ' '
for i in range(1,5):
line += ' conv%d' % i
line += ' dense'
print(line)
logfile.write(line + '\n')
line = ''
for t in list(idx):
line = 'task %d: N=%3d ' % (t, n[t])
for i in range(5):
line += '%.3f ' % gamma[t][i]
print(line)
logfile.write(line + '\n')
if args.omega_on:
line = '\n*** Omega for class imbalance ***'
print(line)
logfile.write(line + '\n')
line = ' '
for i in range(1,6):
line += ' C%d' % i
line += ' '
for i in range(1,6):
line += ' C%d' % i
print(line)
logfile.write(line + '\n')
y = episode[1]
for t in list(idx):
# index sorting according to class size
y_t = y[t]
y_t = y_t[np.sum(y_t,1)==1]
y_t = np.argmax(y_t, -1)
n_c = np.stack([np.sum(y_t==c) for c in range(args.way)])
idx_c = np.argsort(n_c)
o = omega[t][idx_c]
line = 'task %d: ' % (t)
for c in range(args.way):
line += '%3d ' % n_c[idx_c][c]
line += '--> '
for c in range(args.way):
line += '%.3f ' % o[c]
print(line)
logfile.write(line + '\n')