-
Notifications
You must be signed in to change notification settings - Fork 1
/
ranking_SVD_entropy.cpp
402 lines (326 loc) · 12.8 KB
/
ranking_SVD_entropy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
#include <iostream>
using namespace std;
using namespace arma;
using namespace Rcpp;
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/*
//' Calculate the entropy of a matrix based on SVD
//' @param A dataset mxn (m features and n observations)
//' @return entropy
double calculate_entropy(mat A) {
// calculate the svd
vec s = svd(A);
// calculate eigenvalue
s = pow(s, 2);
// normalize relative values
vec v = s/sum(s);
// calculate the entropy for values bigger than 0 (to avoid error)
arma::vec vNoZero = v.elem(find(v > 0));
double E = -sum(vNoZero % log(vNoZero))/log(v.size());
return E;
}
*/
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//' Calculate the entropy of a matrix based on SVD alternative method when more observations than features. A = XtX instead of A = Xt
//' @param A dataset mxm (m features and n observations)
//' @return entropy
double calculate_entropy_new(mat A) {
// calculate the svd
vec s = svd(A);
// normalize relative values
vec v = s/sum(s);
// calculate the entropy for values bigger than 0 (to avoid error)
arma::vec vNoZero = v.elem(find(v > 0));
double E = -sum(vNoZero % log(vNoZero))/log(v.size());
return E;
}
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/* SR method
Simple Ranking:
select mc features according to the highest ranking order of their CE values
*/
//' Calculate the entropy contribution of a matrix based on SVD
//' @param A dataset mxn (m features and n observations)
//' @return entropy contribution vector
// [[Rcpp::export]]
NumericVector CE_entropy_SR(NumericMatrix A){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// total entropy
double E = calculate_entropy_new(Amat);
// Contributio vector to the entropy by a leave-one-out comparison
NumericVector CE(A.nrow());
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < A.nrow(); i++){
cout << "i: " << i << endl;
mat Ai = Amat;
// remove the row i
Ai.shed_row(i) ;
//cout << "Ai size: " << Ai.n_cols << "columns and " << Ai.n_rows << "rows" << endl;
double Ei = calculate_entropy_new(Ai);
CE[i] = E - Ei;
}
return CE;
}
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/* FS1 method
* Forward selection
*/
/*
//' Calculate the entropy of a matrix based on SVD with FS method
//' @param A dataset mxn (m features and n observations)
//' @param mc number of feature to select
//' @return index of features that were selected
// [[Rcpp::export]]
NumericVector CE_entropy_FS1(NumericMatrix A, unsigned int mc){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// vector of index of the features
vec idxFeat(linspace<vec>(1, Amat.n_rows, Amat.n_rows));
// best features index
NumericVector idxBest(mc);
// total entropy
double E = calculate_entropy(Amat);
// CE is the contribution vector of each feature to the entropy
vec CE(A.nrow());
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < A.nrow(); i++){
mat Ai = Amat;
// remove the row i
Ai.shed_row(i);
//cout << "Ai size: " << Ai.n_cols << "columns and " << Ai.n_rows << "rows" << endl;
double Ei = calculate_entropy(Ai);
CE[i] = E - Ei;
}
// select the best feature
int idx = CE.index_max();
// index of the best feature in the R referential
idxBest[0] = idxFeat[idx];
// remove the selected feature number
idxFeat.shed_row(idx);
// save the previous entropy contribution
double Eprev = CE[idx];
// save selected features in a new matrix newA and remove it from the other matrix
mat newA(mc, Amat.n_cols, fill::zeros);
newA.row(0) = Amat.row(idx);
Amat.shed_row(idx);
for(unsigned int j = 0; j < mc - 1; j++){
vec CE(Amat.n_rows);
// for all features
for(unsigned a = 0; a < Amat.n_rows; a++){
//bind the vector to Atest
mat Atest = join_cols(newA.rows(0, j), Amat.row(a));
// calculate the entropy on the features selected and an extra one
double Ei = calculate_entropy(Atest);
// gain of entropy
CE[a] = Ei - Eprev;
}
// index of best entropy contribution
int idx = CE.index_max();
idxBest[j+1] = idxFeat[idx];
// update the previous entropy contribution
Eprev = CE[idx];
newA.row(j+1) = Amat.row(idx);
Amat.shed_row(idx);
idxFeat.shed_row(idx);
}
cout << "Best features: " << idxBest << endl;
return idxBest;
}*/
/*
//' Calculate the entropy of a matrix based on SVD with FS method and new SV-entropy function
//' @param A dataset mxm (m features and n observations) m << n
//' @param mc number of feature to select
//' @return index of features that were selected
// [[Rcpp::export]]
NumericVector CE_entropy_FS1_new(NumericMatrix A, unsigned int mc){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// vector of index of the features
vec idxFeat(linspace<vec>(1, Amat.n_rows, Amat.n_rows));
// best features index
NumericVector idxBest(mc);
// total entropy
double E = calculate_entropy_new(Amat);
// CE is the contribution vector of each feature to the entropy
vec CE(A.nrow());
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < A.nrow(); i++){
mat Ai = Amat;
// remove the row i and column i
Ai.shed_row(i);
Ai.shed_col(i);
//cout << "Ai size: " << Ai.n_cols << "columns and " << Ai.n_rows << "rows" << endl;
double Ei = calculate_entropy_new(Ai);
CE[i] = E - Ei;
}
// select the best feature
int idx = CE.index_max();
// index of the best feature in the R referential
idxBest[0] = idxFeat[idx];
// remove the selected feature number
idxFeat.shed_row(idx);
// save the previous entropy contribution
double Eprev = CE[idx];
// save selected features in a new matrix newA and remove it from the other matrix
// PROBLEM HERE!!!!!!
mat newA(mc, Amat.n_cols, fill::zeros);
newA.row(0) = Amat.row(idx);
Amat.shed_row(idx);
for(unsigned int j = 0; j < mc - 1; j++){
vec CE(Amat.n_rows);
// for all features
for(unsigned a = 0; a < Amat.n_rows; a++){
//bind the vector to Atest
mat Atest = join_cols(newA.rows(0, j), Amat.row(a));
// calculate the entropy on the features selected and an extra one
double Ei = calculate_entropy_new(Atest);
// gain of entropy
CE[a] = Ei - Eprev;
}
// index of best entropy contribution
int idx = CE.index_max();
idxBest[j+1] = idxFeat[idx];
// update the previous entropy contribution
Eprev = CE[idx];
newA.row(j+1) = Amat.row(idx);
Amat.shed_row(idx);
idxFeat.shed_row(idx);
}
cout << "Best features: " << idxBest << endl;
return idxBest;
}
*/
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/* FS2 method
Forward selection
*/
/*
//' Calculate the entropy of a matrix based on SVD with FS method
//' @param A dataset mxn (m features and n observations)
//' @param mc number of feature to select
//' @return index of features that were selected
// [[Rcpp::export]]
NumericVector CE_entropy_FS2(NumericMatrix A, unsigned int mc){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// vector of index of the features
vec idxFeat(linspace<vec>(1, Amat.n_rows, Amat.n_rows));
// best features index
NumericVector idxBest(mc);
for(unsigned int j = 0; j < mc; j++){
// total entropy
double E = calculate_entropy(Amat);
// Contribution vector to the entropy by a leave-one-out comparison
vec CE(Amat.n_rows);
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < Amat.n_rows; i++){
mat Ai = Amat;
// remove row i
Ai.shed_row(i);
double Ei = calculate_entropy(Ai);
CE[i] = E - Ei;
}
// find the index of the highest entropy contribution
int idx = CE.index_max();
idxBest[j] = idxFeat[idx];
// remove the best feature
Amat.shed_row(idx);
idxFeat.shed_row(idx);
}
cout << "Best features: " << idxBest << endl;
return idxBest;
}
*/
//' Calculate the entropy of a matrix based on SVD with FS method
//' @param A dataset mxn (m features and n observations)
//' @param mc number of feature to select
//' @return index of features that were selected
// [[Rcpp::export]]
NumericVector CE_entropy_FS2_new(NumericMatrix A, unsigned int mc){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// vector of index of the features
vec idxFeat(linspace<vec>(1, Amat.n_rows, Amat.n_rows));
// best features index
NumericVector idxBest(mc);
for(unsigned int j = 0; j < mc; j++){
cout << "j: " << j << endl;
// total entropy
double E = calculate_entropy_new(Amat);
// Contribution vector to the entropy by a leave-one-out comparison
vec CE(Amat.n_rows);
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < Amat.n_rows; i++){
mat Ai = Amat;
// remove row i and column i
Ai.shed_row(i);
Ai.shed_col(i);
double Ei = calculate_entropy_new(Ai);
CE[i] = E - Ei;
}
// find the index of the highest entropy contribution
int idx = CE.index_max();
idxBest[j] = idxFeat[idx];
// remove the best feature
Amat.shed_row(idx);
Amat.shed_col(idx);
idxFeat.shed_row(idx);
}
cout << "Best features: " << idxBest << endl;
return idxBest;
}
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
/* BE method
Backward Elimination
Super expensive method...
//' Calculate the entropy of a matrix based on SVD with BE method
//' @param A dataset mxn (m features and n observations)
//' @param mc number of feature to select
//' @return index of features that were selected
// [[Rcpp::export]]
NumericVector CE_entropy_BE(NumericMatrix A, unsigned int mc){
// convert into matrix (armadillo)
mat Amat(A.begin(), A.nrow(), A.ncol(), false);
// vector of index of the features
vec idxFeat(linspace<vec>(1, Amat.n_rows, Amat.n_rows));
// best features index
//NumericVector idxBest(mc);
for(unsigned int j = 0; j < Amat.n_rows-mc; j++){ // TODO: test that this is correct
// total entropy
double E = calculate_entropy(Amat);
// Contribution vector to the entropy by a leave-one-out comparison
vec CE(Amat.n_rows);
// for each feature calculate the contribution to the entropy by a leave-one-out comparison
for(unsigned int i = 0; i < Amat.n_rows; i++){
mat Ai = Amat;
// remove row i
Ai.shed_row(i);
double Ei = calculate_entropy(Ai);
CE[i] = E - Ei;
}
// find the index of the highest entropy contribution
int idx = CE.index_min();
//idxBest[j] = idxFeat[idx];
// remove the best feature
Amat.shed_row(idx);
idxFeat.shed_row(idx);
}
cout << "Best features: " << idxFeat << endl;
return wrap(idxFeat);
}
*/