-
Notifications
You must be signed in to change notification settings - Fork 13
/
train.py
470 lines (394 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os
import inspect
from typing import Optional, List, Dict
import click
from omegaconf import OmegaConf
import torch
import torch.utils.data
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel
from einops import rearrange
from video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
from video_diffusion.data.dataset import ImageSequenceDataset
from video_diffusion.common.util import get_time_string, get_function_args
from video_diffusion.common.image_util import make_grid, annotate_image, save_images_as_gif
from video_diffusion.pipelines.stable_diffusion import SpatioTemporalStableDiffusionPipeline
logger = get_logger(__name__)
def collate_fn(examples):
batch = {
"prompt_ids": torch.cat([example["prompt_ids"] for example in examples], dim=0),
"images": torch.stack([example["images"] for example in examples]),
}
return batch
def log_train_samples(
train_dataloader,
save_path,
num_batch: int = 4,
):
train_samples = []
for idx, batch in enumerate(train_dataloader):
if idx >= num_batch:
break
train_samples.append(batch["images"])
train_samples = torch.cat(train_samples).numpy()
train_samples = rearrange(train_samples, "b c f h w -> b f h w c")
train_samples = (train_samples * 0.5 + 0.5).clip(0, 1)
train_samples = SpatioTemporalStableDiffusionPipeline.numpy_to_pil(train_samples)
train_samples = [make_grid(images, cols=2) for images in zip(*train_samples)]
save_images_as_gif(train_samples, save_path)
class SampleLogger:
def __init__(
self,
prompts: List[str],
clip_length: int,
logdir: str,
subdir: str = "sample",
num_samples_per_prompt: int = 1,
sample_seeds: List[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 7,
annotate: bool = True,
annotate_size: int = 15,
make_grid: bool = True,
grid_column_size: int = 2,
) -> None:
self.prompts = prompts
self.clip_length = clip_length
self.guidance_scale = guidance_scale
self.num_inference_steps = num_inference_steps
if sample_seeds is None:
max_num_samples_per_prompt = int(1e5)
if num_samples_per_prompt > max_num_samples_per_prompt:
raise ValueError
sample_seeds = torch.randint(0, max_num_samples_per_prompt, (num_samples_per_prompt,))
sample_seeds = sorted(sample_seeds.numpy().tolist())
self.sample_seeds = sample_seeds
self.logdir = os.path.join(logdir, subdir)
os.makedirs(self.logdir)
self.annotate = annotate
self.annotate_size = annotate_size
self.make_grid = make_grid
self.grid_column_size = grid_column_size
def log_sample_images(
self, pipeline: SpatioTemporalStableDiffusionPipeline, device: torch.device, step: int
):
samples_all = []
for idx, prompt in enumerate(tqdm(self.prompts, desc="Generating sample images")):
for seed in self.sample_seeds:
generator = torch.Generator(device=device)
generator.manual_seed(seed)
sequence = pipeline(
prompt,
generator=generator,
num_inference_steps=self.num_inference_steps,
clip_length=self.clip_length,
guidance_scale=self.guidance_scale,
num_images_per_prompt=1,
).images[0]
if self.annotate:
images = [
annotate_image(image, prompt, font_size=self.annotate_size) for image in sequence
]
if self.make_grid:
samples_all.append(images)
else:
save_path = os.path.join(self.logdir, f"step_{step}_{idx}_{seed}.gif")
save_images_as_gif(images, save_path)
if self.make_grid:
samples_all = [make_grid(images, cols=2) for images in zip(*samples_all)]
save_path = os.path.join(self.logdir, f"step_{step}.gif")
save_images_as_gif(samples_all, save_path)
def train(
pretrained_model_path: str,
logdir: str,
train_dataset: Dict,
train_steps: int = 300,
validation_steps: int = 1000,
validation_sample_logger: Optional[Dict] = None,
gradient_accumulation_steps: int = 1,
seed: Optional[int] = None,
mixed_precision: Optional[str] = "fp16",
train_batch_size: int = 1,
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_scheduler: str = "constant", # ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
lr_warmup_steps: int = 0,
use_8bit_adam: bool = True,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_checkpointing: bool = False,
prior_preservation: Optional[float] = None,
train_temporal_conv: bool = False,
checkpointing_steps: int = 1000,
):
args = get_function_args()
time_string = get_time_string()
logdir += f"_{time_string}"
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
if accelerator.is_main_process:
os.makedirs(logdir, exist_ok=True)
OmegaConf.save(args, os.path.join(logdir, "config.yml"))
if seed is not None:
set_seed(seed)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_path,
subfolder="tokenizer",
use_fast=False,
)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_path,
subfolder="text_encoder",
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_path,
subfolder="vae",
)
unet = UNetPseudo3DConditionModel.from_2d_model(
os.path.join(pretrained_model_path, "unet"),
)
pipeline = SpatioTemporalStableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=DDIMScheduler.from_pretrained(
pretrained_model_path,
subfolder="scheduler",
),
)
pipeline.set_progress_bar_config(disable=True)
if prior_preservation is not None:
unet2d = UNet2DConditionModel.from_pretrained(
pretrained_model_path,
subfolder="unet",
)
if is_xformers_available():
try:
pipeline.enable_xformers_memory_efficient_attention()
if prior_preservation is not None:
unet2d.enable_xformers_memory_efficient_attention()
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
if prior_preservation is not None:
unet2d.requires_grad_(False)
trainable_modules = ("attn_temporal", ".to_q")
if train_temporal_conv:
trainable_modules += "conv_temporal"
for name, module in unet.named_modules():
if name.endswith(trainable_modules):
for params in module.parameters():
params.requires_grad = True
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = unet.parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(
pretrained_model_path,
subfolder="scheduler",
)
prompt_ids = tokenizer(
train_dataset["prompt"],
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
train_dataset = ImageSequenceDataset(**train_dataset, prompt_ids=prompt_ids)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
train_sample_save_path = os.path.join(logdir, "train_samples.gif")
log_train_samples(save_path=train_sample_save_path, train_dataloader=train_dataloader)
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=train_steps * gradient_accumulation_steps,
)
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
accelerator.register_for_checkpointing(lr_scheduler)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
if prior_preservation is not None:
unet2d.to(accelerator.device, dtype=weight_dtype)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("video") # , config=vars(args))
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {train_steps}")
step = 0
if validation_sample_logger is not None and accelerator.is_main_process:
validation_sample_logger = SampleLogger(**validation_sample_logger, logdir=logdir)
validation_sample_logger.log_sample_images(
pipeline=pipeline,
device=accelerator.device,
step=0,
)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(step, train_steps),
disable=not accelerator.is_local_main_process,
)
progress_bar.set_description("Steps")
def make_data_yielder(dataloader):
while True:
for batch in dataloader:
yield batch
accelerator.wait_for_everyone()
train_data_yielder = make_data_yielder(train_dataloader)
while step < train_steps:
batch = next(train_data_yielder)
vae.eval()
text_encoder.eval()
unet.train()
if prior_preservation is not None:
unet2d.eval()
# with accelerator.accumulate(unet):
# Convert images to latent space
images = batch["images"].to(dtype=weight_dtype)
b = images.shape[0]
images = rearrange(images, "b c f h w -> (b f) c h w")
latents = vae.encode(images).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=b)
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
if prior_preservation is not None:
model_pred_2d = unet2d(noisy_latents[:, :, 0], timesteps, encoder_hidden_states).sample
loss = (
loss
+ F.mse_loss(model_pred[:, :, 0].float(), model_pred_2d.float(), reduction="mean")
* prior_preservation
)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
step += 1
if accelerator.is_main_process:
if validation_sample_logger is not None and step % validation_steps == 0:
unet.eval()
validation_sample_logger.log_sample_images(
pipeline=pipeline,
device=accelerator.device,
step=step,
)
if step % checkpointing_steps == 0:
accepts_keep_fp32_wrapper = "keep_fp32_wrapper" in set(
inspect.signature(accelerator.unwrap_model).parameters.keys()
)
extra_args = {"keep_fp32_wrapper": True} if accepts_keep_fp32_wrapper else {}
pipeline_save = SpatioTemporalStableDiffusionPipeline.from_pretrained(
pretrained_model_path,
unet=accelerator.unwrap_model(unet, **extra_args),
)
checkpoint_save_path = os.path.join(logdir, f"checkpoint_{step}")
pipeline_save.save_pretrained(checkpoint_save_path)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=step)
accelerator.end_training()
@click.command()
@click.option("--config", type=str, default="config/sample.yml")
def run(config):
train(**OmegaConf.load(config))
if __name__ == "__main__":
run()