forked from codekansas/seqgan-text-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
executable file
·86 lines (70 loc) · 3.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
"""Trains the model on some data, and saves it locally.
The default training text is the `lorem.txt` file, which consists of some
lorem ipsum text. The character frequencies in this text are as follows:
';' -> 2 'L' -> 8 'O' -> 12 'E' -> 34
'F' -> 39 'Q' -> 39 'U' -> 46 'I' -> 68
'j' -> 71 'A' -> 75 'V' -> 77 'C' -> 95
'S' -> 100 'x' -> 103 'D' -> 106 'M' -> 116
'P' -> 149 'N' -> 178 '\n' -> 200 'h' -> 271
'f' -> 431 'q' -> 593 'g' -> 620 'b' -> 625
'v' -> 771 ',' -> 861 'p' -> 1085 '.' -> 1138
'd' -> 1416 'c' -> 2050 'o' -> 2184 'm' -> 2319
'r' -> 2833 'n' -> 2916 'l' -> 3017 'a' -> 3969
't' -> 4194 's' -> 4246 'u' -> 4514 'i' -> 5111
'e' -> 5643 ' ' -> 8998
"""
from __future__ import print_function
import utils
from model import SeqGAN
import argparse
import tensorflow as tf
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Train a SeqGAN model on some text.')
parser.add_argument('-t', '--text', default='lorem.txt', type=str,
help='path to the text to use')
parser.add_argument('-l', '--seq_len', default=100, type=int,
help='the length of each training sequence')
parser.add_argument('-b', '--batch_size', default=32, type=int,
help='size of each training batch')
parser.add_argument('-n', '--num_steps', default=100, type=int,
help='number of steps per epoch')
parser.add_argument('-e', '--num_epochs', default=1000, type=int,
help='number of training epochs')
parser.add_argument('-c', '--only_cpu', default=False, action='store_true',
help='if set, only build weights on cpu')
parser.add_argument('-p', '--learn_phase', default=None, type=int,
help='learning phase (None for synchronized)')
parser.add_argument('-d', '--logdir', default='model/', type=str,
help='where to store the trained model')
parser.add_argument('-r', '--dictionary', default='dictionary.pkl', type=str,
help='path to the dictionary')
args = parser.parse_args()
# Turns on logging.
import logging
root = logging.getLogger()
root.setLevel(logging.DEBUG)
dictionary, rev_dict = utils.get_dictionary(args.text, args.dictionary)
num_classes = len(dictionary)
iterator = utils.tokenize(args.text,
dictionary,
batch_size=args.batch_size,
seq_len=args.seq_len)
sess = tf.Session()
model = SeqGAN(sess,
num_classes,
logdir=args.logdir,
learn_phase=args.learn_phase,
only_cpu=args.only_cpu)
model.build()
model.load(ignore_missing=True)
for epoch in range(1, args.num_epochs + 1):
for step in range(1, args.num_steps + 1):
logging.info('epoch %d, step %d', epoch, step)
model.train_batch(next(iterator))
# Generates a sample from the model.
g = model.generate(1000)
print(utils.detokenize(g, rev_dict))
# Saves the model to the logdir.
model.save()