forked from tidyverse/purrr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross.R
173 lines (161 loc) · 5.41 KB
/
cross.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#' Produce all combinations of list elements
#'
#' `cross2()` returns the product set of the elements of
#' `.x` and `.y`. `cross3()` takes an additional
#' `.z` argument. `cross()` takes a list `.l` and
#' returns the cartesian product of all its elements in a list, with
#' one combination by element. `cross_df()` is like
#' `cross()` but returns a data frame, with one combination by
#' row.
#'
#' `cross()`, `cross2()` and `cross3()` return the
#' cartesian product is returned in wide format. This makes it more
#' amenable to mapping operations. `cross_df()` returns the output
#' in long format just as `expand.grid()` does. This is adapted
#' to rowwise operations.
#'
#' When the number of combinations is large and the individual
#' elements are heavy memory-wise, it is often useful to filter
#' unwanted combinations on the fly with `.filter`. It must be
#' a predicate function that takes the same number of arguments as the
#' number of crossed objects (2 for `cross2()`, 3 for
#' `cross3()`, `length(.l)` for `cross()`) and
#' returns `TRUE` or `FALSE`. The combinations where the
#' predicate function returns `TRUE` will be removed from the
#' result.
#' @seealso [expand.grid()]
#' @param .x,.y,.z Lists or atomic vectors.
#' @param .l A list of lists or atomic vectors. Alternatively, a data
#' frame. `cross_df()` requires all elements to be named.
#' @param .filter A predicate function that takes the same number of
#' arguments as the number of variables to be combined.
#' @return `cross2()`, `cross3()` and `cross()`
#' always return a list. `cross_df()` always returns a data
#' frame. `cross()` returns a list where each element is one
#' combination so that the list can be directly mapped
#' over. `cross_df()` returns a data frame where each row is one
#' combination.
#' @export
#' @examples
#' # We build all combinations of names, greetings and separators from our
#' # list of data and pass each one to paste()
#' data <- list(
#' id = c("John", "Jane"),
#' greeting = c("Hello.", "Bonjour."),
#' sep = c("! ", "... ")
#' )
#'
#' data %>%
#' cross() %>%
#' map(lift(paste))
#'
#' # cross() returns the combinations in long format: many elements,
#' # each representing one combination. With cross_df() we'll get a
#' # data frame in long format: crossing three objects produces a data
#' # frame of three columns with each row being a particular
#' # combination. This is the same format that expand.grid() returns.
#' args <- data %>% cross_df()
#'
#' # In case you need a list in long format (and not a data frame)
#' # just run as.list() after cross_df()
#' args %>% as.list()
#'
#' # This format is often less pratical for functional programming
#' # because applying a function to the combinations requires a loop
#' out <- vector("list", length = nrow(args))
#' for (i in seq_along(out))
#' out[[i]] <- map(args, i) %>% invoke(paste, .)
#' out
#'
#' # It's easier to transpose and then use invoke_map()
#' args %>% transpose() %>% map_chr(~ invoke(paste, .))
#'
#' # Unwanted combinations can be filtered out with a predicate function
#' filter <- function(x, y) x >= y
#' cross2(1:5, 1:5, .filter = filter) %>% str()
#'
#' # To give names to the components of the combinations, we map
#' # setNames() on the product:
#' seq_len(3) %>%
#' cross2(., ., .filter = `==`) %>%
#' map(setNames, c("x", "y"))
#'
#' # Alternatively we can encapsulate the arguments in a named list
#' # before crossing to get named components:
#' seq_len(3) %>%
#' list(x = ., y = .) %>%
#' cross(.filter = `==`)
cross <- function(.l, .filter = NULL) {
if (is_empty(.l)) {
return(.l)
}
if (!is.null(.filter)) {
.filter <- as_mapper(.filter)
}
n <- length(.l)
lengths <- lapply(.l, length)
names <- names(.l)
factors <- cumprod(lengths)
total_length <- factors[n]
factors <- c(1, factors[-n])
out <- replicate(total_length, vector("list", n), simplify = FALSE)
for (i in seq_along(out)) {
for (j in seq_len(n)) {
index <- floor((i - 1) / factors[j]) %% length(.l[[j]]) + 1
out[[i]][[j]] <- .l[[j]][[index]]
}
names(out[[i]]) <- names
# Filter out unwanted elements. We set them to NULL instead of
# completely removing them so we don't mess up the loop indexing.
# NULL elements are removed later on.
if (!is.null(.filter)) {
is_to_filter <- do.call(".filter", unname(out[[i]]))
if (!is_bool(is_to_filter)) {
abort(sprintf(
"The filter function must return a single logical `TRUE` or `FALSE`, not %s",
as_predicate_friendly_type_of(is_to_filter)
))
}
if (is_to_filter) {
out[i] <- list(NULL)
}
}
}
# Remove filtered elements
compact(out)
}
#' @export
#' @rdname cross
cross2 <- function(.x, .y, .filter = NULL) {
cross(list(.x, .y), .filter = .filter)
}
#' @export
#' @rdname cross
cross3 <- function(.x, .y, .z, .filter = NULL) {
cross(list(.x, .y, .z), .filter = .filter)
}
#' @rdname cross
#' @export
cross_df <- function(.l, .filter = NULL) {
check_tibble()
cross(.l, .filter = .filter) %>%
transpose() %>%
simplify_all() %>%
tibble::as_tibble()
}
#' @export
#' @usage NULL
#' @rdname cross
cross_n <- function(...) {
warning("`cross_n()` is deprecated; please use `cross()` instead.",
call. = FALSE)
cross(...)
}
#' @export
#' @usage NULL
#' @rdname cross
cross_d <- function(...) {
warning("`cross_d()` is deprecated; please use `cross_df()` instead.",
call. = FALSE)
cross_df(...)
}