forked from tidyverse/purrr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap.R
304 lines (278 loc) · 8.75 KB
/
map.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#' Apply a function to each element of a vector
#'
#' @description
#'
#' The map functions transform their input by applying a function to
#' each element and returning a vector the same length as the input.
#'
#' * `map()`, `map_if()` and `map_at()` always return a list. See the
#' [modify()] family for versions that return an object of the same
#' type as the input.
#'
#' The `_if` and `_at` variants take a predicate function `.p` that
#' determines which elements of `.x` are transformed with `.f`.
#'
#' * `map_lgl()`, `map_int()`, `map_dbl()` and `map_chr()` each return
#' an atomic vector of the indicated type (or die trying).
#'
#' The return value of `.f` must be of length one for each element of
#' `.x`. If `.f` uses an extractor function shortcut, `.default`
#' can be specified to handle values that are absent or empty. See
#' [as_mapper()] for more on `.default`.
#'
#' * `map_dfr()` and `map_dfc()` return data frames created by
#' row-binding and column-binding respectively. They require dplyr
#' to be installed.
#'
#' * `walk()` calls `.f` for its side-effect and returns the input `.x`.
#'
#' @inheritParams as_mapper
#' @param .x A list or atomic vector.
#' @param .p A single predicate function, a formula describing such a
#' predicate function, or a logical vector of the same length as `.x`.
#' Alternatively, if the elements of `.x` are themselves lists of
#' objects, a string indicating the name of a logical element in the
#' inner lists. Only those elements where `.p` evaluates to
#' `TRUE` will be modified.
#' @param .at A character vector of names, positive numeric vector of
#' positions to include, or a negative numeric vector of positions to
#' exlude. Only those elements corresponding to `.at` will be modified.
#' If the `tidyselect` package is installed, you can use `vars()` and
#' the `tidyselect` helpers to select elements.
#' @param ... Additional arguments passed on to the mapped function.
#' @return All functions return a vector the same length as `.x`.
#'
#' `map()` returns a list, `map_lgl()` a logical vector, `map_int()` an
#' integer vector, `map_dbl()` a double vector, and `map_chr()` a character
#' vector. `map_df()`, `map_dfc()`, `map_dfr()` all return a data frame.
#' The output of `.f` will be automatically typed upwards,
#' e.g. logical -> integer -> double -> character.
#'
#' If `.x` has `names()`, the return value preserves those names.
#'
#' `walk()` returns the input `.x` (invisibly). This makes it easy to
#' use in pipe.
#' @export
#' @family map variants
#' @examples
#' 1:10 %>%
#' map(rnorm, n = 10) %>%
#' map_dbl(mean)
#'
#' # Or use an anonymous function
#' 1:10 %>%
#' map(function(x) rnorm(10, x))
#'
#' # Or a formula
#' 1:10 %>%
#' map(~ rnorm(10, .x))
#'
#' # The names of the input are preserved in the output:
#' list(foo = 1, bar = 2) %>% map(`+`, 10)
#'
#' # Using set_names() with character vectors is handy to keep track
#' # of the original inputs:
#' set_names(c("foo", "bar")) %>% map_chr(paste0, ":suffix")
#'
#' # Extract by name or position
#' # .default specifies value for elements that are missing or NULL
#' l1 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
#' l1 %>% map("a", .default = "???")
#' l1 %>% map_int("b", .default = NA)
#' l1 %>% map_int(2, .default = NA)
#'
#' # Supply multiple values to index deeply into a list
#' l2 <- list(
#' list(num = 1:3, letters[1:3]),
#' list(num = 101:103, letters[4:6]),
#' list()
#' )
#' l2 %>% map(c(2, 2))
#'
#' # Use a list to build an extractor that mixes numeric indices and names,
#' # and .default to provide a default value if the element does not exist
#' l2 %>% map(list("num", 3))
#' l2 %>% map_int(list("num", 3), .default = NA)
#'
#'
#' # Use a predicate function to decide whether to map a function:
#' map_if(iris, is.factor, as.character)
#'
#' # Specify an alternative with the `.else` argument:
#' map_if(iris, is.factor, as.character, .else = as.integer)
#'
#' # A more realistic example: split a data frame into pieces, fit a
#' # model to each piece, summarise and extract R^2
#' mtcars %>%
#' split(.$cyl) %>%
#' map(~ lm(mpg ~ wt, data = .x)) %>%
#' map(summary) %>%
#' map_dbl("r.squared")
#'
#' # Use map_lgl(), map_dbl(), etc to reduce to a vector.
#' # * list
#' mtcars %>% map(sum)
#' # * vector
#' mtcars %>% map_dbl(sum)
#'
#' # If each element of the output is a data frame, use
#' # map_dfr to row-bind them together:
#' mtcars %>%
#' split(.$cyl) %>%
#' map(~ lm(mpg ~ wt, data = .x)) %>%
#' map_dfr(~ as.data.frame(t(as.matrix(coef(.)))))
#' # (if you also want to preserve the variable names see
#' # the broom package)
#'
#' # Use `map_depth()` to recursively traverse nested vectors and map
#' # a function at a certain depth:
#' x <- list(a = list(foo = 1:2, bar = 3:4), b = list(baz = 5:6))
#' str(x)
#' map_depth(x, 2, paste, collapse = "/")
#'
#' # Equivalent to:
#' map(x, map, paste, collapse = "/")
map <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "list")
}
#' @rdname map
#' @param .else A function applied to elements of `.x` for which `.p`
#' returns `FALSE`.
#' @export
map_if <- function(.x, .p, .f, ..., .else = NULL) {
sel <- probe(.x, .p)
out <- list_along(.x)
out[sel] <- map(.x[sel], .f, ...)
if (is_null(.else)) {
out[!sel] <- .x[!sel]
} else {
out[!sel] <- map(.x[!sel], .else, ...)
}
set_names(out, names(.x))
}
#' @rdname map
#' @export
map_at <- function(.x, .at, .f, ...) {
where <- at_selection(names(.x), .at)
sel <- inv_which(.x, where)
out <- list_along(.x)
out[sel] <- map(.x[sel], .f, ...)
out[!sel] <- .x[!sel]
set_names(out, names(.x))
}
#' @rdname map
#' @export
map_lgl <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "logical")
}
#' @rdname map
#' @export
map_chr <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "character")
}
#' @rdname map
#' @export
map_int <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "integer")
}
#' @rdname map
#' @export
map_dbl <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "double")
}
#' @rdname map
#' @export
map_raw <- function(.x, .f, ...) {
.f <- as_mapper(.f, ...)
.Call(map_impl, environment(), ".x", ".f", "raw")
}
#' @rdname map
#' @param .id Either a string or `NULL`. If a string, the output will contain
#' a variable with that name, storing either the name (if `.x` is named) or
#' the index (if `.x` is unnamed) of the input. If `NULL`, the default, no
#' variable will be created.
#'
#' Only applies to `_dfr` variant.
#' @export
map_dfr <- function(.x, .f, ..., .id = NULL) {
if (!is_installed("dplyr")) {
abort("`map_df()` requires dplyr")
}
.f <- as_mapper(.f, ...)
res <- map(.x, .f, ...)
dplyr::bind_rows(res, .id = .id)
}
#' @rdname map
#' @export
#' @usage NULL
map_df <- map_dfr
#' @rdname map
#' @export
map_dfc <- function(.x, .f, ...) {
if (!is_installed("dplyr")) {
abort("`map_dfc()` requires dplyr")
}
.f <- as_mapper(.f, ...)
res <- map(.x, .f, ...)
dplyr::bind_cols(res)
}
#' @export
#' @rdname map
walk <- function(.x, .f, ...) {
map(.x, .f, ...)
invisible(.x)
}
#' @rdname map
#' @param .depth Level of `.x` to map on. Use a negative value to count up
#' from the lowest level of the list.
#'
#' * `map_depth(x, 0, fun)` is equivalent to `fun(x)`.
#' * `map_depth(x, 1, fun)` is equivalent to `x <- map(x, fun)`
#' * `map_depth(x, 2, fun)` is equivalent to `x <- map(x, ~ map(., fun))`
#' @param .ragged If `TRUE`, will apply to leaves, even if they're not
#' at depth `.depth`. If `FALSE`, will throw an error if there are
#' no elements at depth `.depth`.
#' @export
map_depth <- function(.x, .depth, .f, ..., .ragged = FALSE) {
if (!is_integerish(.depth, n = 1, finite = TRUE)) {
abort("`.depth` must be a single number")
}
if (.depth < 0) {
.depth <- vec_depth(.x) + .depth
}
.f <- as_mapper(.f, ...)
map_depth_rec(.x, .depth, .f, ..., .ragged = .ragged, .atomic = FALSE)
}
map_depth_rec <- function(.x,
.depth,
.f,
...,
.ragged,
.atomic) {
if (.depth < 0) {
abort("Invalid depth")
}
if (.atomic) {
if (!.ragged) {
abort("List not deep enough")
}
return(map(.x, .f, ...))
}
if (.depth == 0) {
return(.f(.x, ...))
}
if (.depth == 1) {
return(map(.x, .f, ...))
}
# Should this be replaced with a generic way of figuring out atomic
# types?
.atomic <- is_atomic(.x)
map(.x, function(x) {
map_depth_rec(x, .depth - 1, .f, ..., .ragged = .ragged, .atomic = .atomic)
})
}