Skip to content

Latest commit

 

History

History
31 lines (22 loc) · 943 Bytes

README.md

File metadata and controls

31 lines (22 loc) · 943 Bytes

Recurrent Reinforcement Learning Implementation using Matlab/Octave

20210321 Update: A PyTorch-port of this repo is available at ceshine/RRL_PyTorch.

Reference: Stock Trading with Recurrent Reinforcement Learning (RRL) By Gabriel Molina

File Description

Core Functions

  • costFunction.m
  • updateFt.m
  • rewardFunction.m
  • featureNormalize.m
  • sharpRatio.m

Utility Functions

  • checkRRLGradient.m : Verify the correctness of gradient function in cost function
  • getNumericalGradient.m : Approximate gradient (inefficiently) for verification

Test Function:

  • testTWSE.m : Use Taiwan Weighted Stock Index from Taiwan Stock Exchange.
  • testDAX.m : Use DAX index of Germany.