-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscraper.py
109 lines (85 loc) · 3.49 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) 2018 charlysan
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import requests
import csv
import time
import numbers
import os
import argparse
import datetime
class Statistics(object):
def __init__(self):
self.downstream_channels_stats = dict()
def mean(self, numbers):
return float(sum(numbers)) / max(len(numbers), 1)
def calculatePowerMean(self):
values = list()
for ch in self.downstream_channels_stats:
values.append(self.downstream_channels_stats[ch].power)
return self.mean(values)
def calculateSNRMean(self):
values = list()
for ch in self.downstream_channels_stats:
values.append(self.downstream_channels_stats[ch].snr)
return self.mean(values)
def persistInCSV(self, output_path=None):
timestamp = int(time.time())
ds = self.downstream_channels_stats
path = './' if output_path is None else output_path + '/'
if not os.path.exists(os.path.dirname(path)):
try:
os.makedirs(os.path.dirname(path))
except BaseException:
raise
for ch in ds:
with open(path + str(ch) + '.csv', 'a') as csv_file:
writer = csv.writer(csv_file)
writer.writerow([timestamp, ds[ch].power, ds[ch].snr])
with open(path + '0.csv', 'a') as csv_file:
writer = csv.writer(csv_file)
writer.writerow([timestamp,
"{:.2f}".format(self.calculatePowerMean()),
"{:.2f}".format(self.calculateSNRMean())])
class ChannelStatistics(object):
def __init__(self):
self.channel_number = None
self.modulation = None
self.frequency = None
self.power = None
self.snr = None
self.ber = None
self.correctables = None
self.uncorrectables = None
class Scraper():
DEFAULT_TIMEOUT = 10
def __init__(self, http_client_timeout=DEFAULT_TIMEOUT):
self.http_client_timeout = http_client_timeout
self.device_name = None
self.url = None
self.stats = None
def parse_web_page(self, page):
pass
def get_modem_status_page(self):
try:
page = requests.get(self.url, timeout=self.http_client_timeout)
except Exception as e:
print(str(e))
exit(-1)
if page.status_code != 200:
print('Cannot get device status')
exit(-1)
return page