-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMGPU_search_arch.py
210 lines (176 loc) · 8.84 KB
/
MGPU_search_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# @Date : 2019-10-22
# @Author : Chen Gao
from __future__ import absolute_import, division, print_function
import cfg
import archs
import datasets
from network import train, validate, LinearLrDecay, load_params, copy_params
from utils.utils import set_log_dir, save_checkpoint, create_logger, count_parameters_in_MB
from utils.inception_score import _init_inception
from utils.fid_score import create_inception_graph, check_or_download_inception
from utils.genotype import alpha2genotype, beta2genotype, draw_graph_G, draw_graph_D
import torch
import os
import numpy as np
import torch.nn as nn
from tensorboardX import SummaryWriter
from tqdm import tqdm
from copy import deepcopy
import torch.nn.functional as F
from architect import Architect_gen, Architect_dis
from utils.flop_benchmark import print_FLOPs
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main():
args = cfg.parse_args()
torch.cuda.manual_seed(args.random_seed)
# set visible GPU ids
if len(args.gpu_ids) > 0:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
# set TensorFlow environment for evaluation (calculate IS and FID)
_init_inception()
inception_path = check_or_download_inception('./tmp/imagenet/')
create_inception_graph(inception_path)
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for _id in range(len(str_ids)):
if _id >= 0:
args.gpu_ids.append(_id)
if len(args.gpu_ids) > 1:
args.gpu_ids = args.gpu_ids[1:]
else:
args.gpu_ids = args.gpu_ids
# import network
basemodel_gen = eval('archs.' + args.arch + '.Generator')(args=args)
gen_net = torch.nn.DataParallel(basemodel_gen, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
basemodel_dis = eval('archs.' + args.arch + '.Discriminator')(args=args)
dis_net = torch.nn.DataParallel(basemodel_dis, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
architect_gen = Architect_gen(gen_net, args)
architect_dis = Architect_dis(dis_net, args)
# weight init
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
if args.init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif args.init_type == 'orth':
nn.init.orthogonal_(m.weight.data)
elif args.init_type == 'xavier_uniform':
nn.init.xavier_uniform(m.weight.data, 1.)
else:
raise NotImplementedError('{} unknown inital type'.format(args.init_type))
elif classname.find('BatchNorm2d') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
gen_net.apply(weights_init)
dis_net.apply(weights_init)
# set optimizer
arch_params_gen = gen_net.module.arch_parameters()
arch_params_gen_ids = list(map(id, arch_params_gen))
weight_params_gen = filter(lambda p: id(p) not in arch_params_gen_ids, gen_net.parameters())
gen_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, weight_params_gen),
args.g_lr, (args.beta1, args.beta2))
arch_params_dis = dis_net.module.arch_parameters()
arch_params_dis_ids = list(map(id, arch_params_dis))
weight_params_dis = filter(lambda p: id(p) not in arch_params_dis_ids, dis_net.parameters())
dis_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, weight_params_dis),
args.d_lr, (args.beta1, args.beta2))
# set up data_loader
dataset = datasets.ImageDataset(args)
train_loader = dataset.train
# epoch number for dis_net
args.max_epoch_D = args.max_epoch_G * args.n_critic
if args.max_iter_G:
args.max_epoch_D = np.ceil(args.max_iter_G * args.n_critic / len(train_loader))
args.max_iter_D = args.max_epoch_D * len(train_loader)
gen_scheduler = LinearLrDecay(gen_optimizer, args.g_lr, 0.0, 0, args.max_iter_D)
dis_scheduler = LinearLrDecay(dis_optimizer, args.d_lr, 0.0, 0, args.max_iter_D)
# fid stat
if args.dataset.lower() == 'cifar10':
fid_stat = 'fid_stat/fid_stats_cifar10_train.npz'
elif args.dataset.lower() == 'stl10':
fid_stat = 'fid_stat/stl10_train_unlabeled_fid_stats_48.npz'
else:
raise NotImplementedError(f'no fid stat for {args.dataset.lower()}')
assert os.path.exists(fid_stat)
# initial
fixed_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (25, args.latent_dim)))
gen_avg_param = copy_params(gen_net)
start_epoch = 0
# best_fid = 1e4
# set writer
if args.checkpoint:
# resuming
print(f'=> resuming from {args.checkpoint}')
assert os.path.exists(os.path.join('exps', args.checkpoint))
checkpoint_file = os.path.join('exps', args.checkpoint, 'Model', 'checkpoint_best.pth')
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
start_epoch = checkpoint['epoch']
gen_net.load_state_dict(checkpoint['gen_state_dict'])
dis_net.load_state_dict(checkpoint['dis_state_dict'])
gen_optimizer.load_state_dict(checkpoint['gen_optimizer'])
dis_optimizer.load_state_dict(checkpoint['dis_optimizer'])
avg_gen_net = deepcopy(gen_net)
avg_gen_net.load_state_dict(checkpoint['avg_gen_state_dict'])
gen_avg_param = copy_params(avg_gen_net)
del avg_gen_net
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
logger.info(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
else:
# create new log dir
assert args.exp_name
args.path_helper = set_log_dir('exps', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
writer_dict = {
'writer': SummaryWriter(args.path_helper['log_path']),
'train_global_steps': start_epoch * len(train_loader),
'valid_global_steps': start_epoch // args.val_freq,
}
logger.info("param size of G = %fMB", count_parameters_in_MB(gen_net))
logger.info("param size of D = %fMB", count_parameters_in_MB(dis_net))
# search loop
for epoch in tqdm(range(int(start_epoch), int(args.max_epoch_D)), desc='total progress'):
lr_schedulers = (gen_scheduler, dis_scheduler) if args.lr_decay else None
tau_decay = np.log(args.tau_max / args.tau_min) / args.max_epoch_D if args.gumbel_softmax else None
tau = max(0.1, args.tau_max * np.exp(-tau_decay * epoch)) if args.gumbel_softmax else None
if tau:
gen_net.module.set_tau(tau)
dis_net.module.set_tau(tau)
# search arch and train weights
if epoch > 0:
train(args, gen_net, dis_net, gen_optimizer, dis_optimizer, gen_avg_param, train_loader, epoch, writer_dict,
lr_schedulers, architect_gen=architect_gen, architect_dis=architect_dis)
# save and visualise current searched arch
if epoch == 0 or epoch % args.derive_freq == 0 or epoch == int(args.max_epoch_D) - 1:
genotype_G = alpha2genotype(gen_net.module.alphas_normal, gen_net.module.alphas_up, save=True,
file_path=os.path.join(args.path_helper['genotypes_path'], str(epoch) + '_G.npy'))
genotype_D = beta2genotype(dis_net.module.alphas_normal, dis_net.module.alphas_down, save=True,
file_path=os.path.join(args.path_helper['genotypes_path'], str(epoch) + '_D.npy'))
if args.draw_arch:
draw_graph_G(genotype_G, save=True, file_path=os.path.join(args.path_helper['graph_vis_path'], str(epoch) + '_G'))
draw_graph_D(genotype_D, save=True, file_path=os.path.join(args.path_helper['graph_vis_path'], str(epoch) + '_D'))
# validate current searched arch
if epoch == 0 or epoch % args.val_freq == 0 or epoch == int(args.max_epoch_D) - 1:
backup_param = copy_params(gen_net)
load_params(gen_net, gen_avg_param)
inception_score, std, fid_score = validate(args, fixed_z, fid_stat, gen_net, writer_dict)
logger.info(f'Inception score mean: {inception_score}, Inception score std: {std}, '
f'FID score: {fid_score} || @ epoch {epoch}.')
avg_gen_net = deepcopy(gen_net)
load_params(avg_gen_net, gen_avg_param)
save_checkpoint({
'epoch': epoch + 1,
'model': args.arch,
'gen_state_dict': gen_net.state_dict(),
'dis_state_dict': dis_net.state_dict(),
'avg_gen_state_dict': avg_gen_net.state_dict(),
'gen_optimizer': gen_optimizer.state_dict(),
'dis_optimizer': dis_optimizer.state_dict(),
'path_helper': args.path_helper
}, False, args.path_helper['ckpt_path'])
del avg_gen_net
if __name__ == '__main__':
main()