-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMGPU_train_arch.py
executable file
·202 lines (174 loc) · 8.14 KB
/
MGPU_train_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# @Date : 2019-10-22
# @Author : Chen Gao
from __future__ import absolute_import, division, print_function
import cfg
import archs
import datasets
from network import train, validate, LinearLrDecay, load_params, copy_params
from utils.utils import set_log_dir, save_checkpoint, create_logger, count_parameters_in_MB
from utils.inception_score import _init_inception
from utils.fid_score import create_inception_graph, check_or_download_inception
from utils.flop_benchmark import print_FLOPs
import torch
import os
import numpy as np
import torch.nn as nn
from tensorboardX import SummaryWriter
from tqdm import tqdm
from copy import deepcopy
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main():
args = cfg.parse_args()
torch.cuda.manual_seed(args.random_seed)
# set visible GPU ids
if len(args.gpu_ids) > 0:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
# set TensorFlow environment for evaluation (calculate IS and FID)
_init_inception()
inception_path = check_or_download_inception('./tmp/imagenet/')
create_inception_graph(inception_path)
# the first GPU in visible GPUs is dedicated for evaluation (running Inception model)
str_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for id in range(len(str_ids)):
if id >= 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 1:
args.gpu_ids = args.gpu_ids[1:]
else:
args.gpu_ids = args.gpu_ids
# genotype G
genotypes_root = os.path.join('exps', args.genotypes_exp, 'Genotypes')
genotype_G = np.load(os.path.join(genotypes_root, 'latest_G.npy'))
# import network from genotype
basemodel_gen = eval('archs.' + args.arch + '.Generator')(args, genotype_G)
gen_net = torch.nn.DataParallel(basemodel_gen, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
basemodel_dis = eval('archs.' + args.arch + '.Discriminator')(args)
dis_net = torch.nn.DataParallel(basemodel_dis, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
# basemodel_gen = eval('archs.' + args.arch + '.Generator')(args=args)
# gen_net = torch.nn.DataParallel(basemodel_gen, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
# basemodel_dis = eval('archs.' + args.arch + '.Discriminator')(args=args)
# dis_net = torch.nn.DataParallel(basemodel_dis, device_ids=args.gpu_ids).cuda(args.gpu_ids[0])
# weight init
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
if args.init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif args.init_type == 'orth':
nn.init.orthogonal_(m.weight.data)
elif args.init_type == 'xavier_uniform':
nn.init.xavier_uniform(m.weight.data, 1.)
else:
raise NotImplementedError('{} unknown inital type'.format(args.init_type))
elif classname.find('BatchNorm2d') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
gen_net.apply(weights_init)
dis_net.apply(weights_init)
# set up data_loader
dataset = datasets.ImageDataset(args)
train_loader = dataset.train
# epoch number for dis_net
args.max_epoch_D = args.max_epoch_G * args.n_critic
if args.max_iter_G:
args.max_epoch_D = np.ceil(args.max_iter_G * args.n_critic / len(train_loader))
max_iter_D = args.max_epoch_D * len(train_loader)
# set optimizer
gen_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, gen_net.parameters()),
args.g_lr, (args.beta1, args.beta2))
dis_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, dis_net.parameters()),
args.d_lr, (args.beta1, args.beta2))
gen_scheduler = LinearLrDecay(gen_optimizer, args.g_lr, 0.0, 0, max_iter_D)
dis_scheduler = LinearLrDecay(dis_optimizer, args.d_lr, 0.0, 0, max_iter_D)
# fid stat
if args.dataset.lower() == 'cifar10':
fid_stat = 'fid_stat/fid_stats_cifar10_train.npz'
elif args.dataset.lower() == 'stl10':
fid_stat = 'fid_stat/stl10_train_unlabeled_fid_stats_48.npz'
else:
raise NotImplementedError(f'no fid stat for {args.dataset.lower()}')
assert os.path.exists(fid_stat)
# initial
gen_avg_param = copy_params(gen_net)
start_epoch = 0
best_fid = 1e4
# set writer
if args.checkpoint:
# resuming
print(f'=> resuming from {args.checkpoint}')
assert os.path.exists(os.path.join('exps', args.checkpoint))
checkpoint_file = os.path.join('exps', args.checkpoint, 'Model', 'checkpoint_best.pth')
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
start_epoch = checkpoint['epoch']
best_fid = checkpoint['best_fid']
gen_net.load_state_dict(checkpoint['gen_state_dict'])
dis_net.load_state_dict(checkpoint['dis_state_dict'])
gen_optimizer.load_state_dict(checkpoint['gen_optimizer'])
dis_optimizer.load_state_dict(checkpoint['dis_optimizer'])
avg_gen_net = deepcopy(gen_net)
avg_gen_net.load_state_dict(checkpoint['avg_gen_state_dict'])
gen_avg_param = copy_params(avg_gen_net)
del avg_gen_net
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
logger.info(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
else:
# create new log dir
assert args.exp_name
args.path_helper = set_log_dir('exps', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
writer_dict = {
'writer': SummaryWriter(args.path_helper['log_path']),
'train_global_steps': start_epoch * len(train_loader),
'valid_global_steps': start_epoch // args.val_freq,
}
# model size
logger.info('Param size of G = %fMB', count_parameters_in_MB(gen_net))
logger.info('Param size of D = %fMB', count_parameters_in_MB(dis_net))
print_FLOPs(basemodel_gen, (1, args.latent_dim), logger)
print_FLOPs(basemodel_dis, (1, 3, args.img_size, args.img_size), logger)
# for visualization
if args.draw_arch:
from utils.genotype import draw_graph_G
draw_graph_G(genotype_G, save=True, file_path=os.path.join(args.path_helper['graph_vis_path'], 'latest_G'))
fixed_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (100, args.latent_dim)))
# train loop
for epoch in tqdm(range(int(start_epoch), int(args.max_epoch_D)), desc='total progress'):
lr_schedulers = (gen_scheduler, dis_scheduler) if args.lr_decay else None
train(args, gen_net, dis_net, gen_optimizer, dis_optimizer,
gen_avg_param, train_loader, epoch, writer_dict, lr_schedulers)
if epoch % args.val_freq == 0 or epoch == int(args.max_epoch_D)-1:
backup_param = copy_params(gen_net)
load_params(gen_net, gen_avg_param)
inception_score, std, fid_score = validate(args, fixed_z, fid_stat, gen_net, writer_dict)
logger.info(f'Inception score mean: {inception_score}, Inception score std: {std}, '
f'FID score: {fid_score} || @ epoch {epoch}.')
load_params(gen_net, backup_param)
if fid_score < best_fid:
best_fid = fid_score
is_best = True
else:
is_best = False
else:
is_best = False
# save model
avg_gen_net = deepcopy(gen_net)
load_params(avg_gen_net, gen_avg_param)
save_checkpoint({
'epoch': epoch + 1,
'model': args.arch,
'gen_state_dict': gen_net.state_dict(),
'dis_state_dict': dis_net.state_dict(),
'avg_gen_state_dict': avg_gen_net.state_dict(),
'gen_optimizer': gen_optimizer.state_dict(),
'dis_optimizer': dis_optimizer.state_dict(),
'best_fid': best_fid,
'path_helper': args.path_helper
}, is_best, args.path_helper['ckpt_path'])
del avg_gen_net
if __name__ == '__main__':
main()