-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpaths_catalog.py
206 lines (196 loc) · 7.96 KB
/
paths_catalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Centralized catalog of paths."""
import os
class DatasetCatalog(object):
DATA_DIR = "Dataset"
DATASETS = {
"coco_2017_train": {
"img_dir": "coco/train2017",
"ann_file": "coco/annotations/instances_train2017.json"
},
"coco_2017_val": {
"img_dir": "coco/val2017",
"ann_file": "coco/annotations/instances_val2017.json"
},
"coco_2014_train": {
"img_dir": "coco/train2014",
"ann_file": "coco/annotations/instances_train2014.json"
},
"coco_2014_val": {
"img_dir": "coco/val2014",
"ann_file": "coco/annotations/instances_val2014.json"
},
"coco_2014_minival": {
"img_dir": "coco/val2014",
"ann_file": "coco/annotations/instances_minival2014.json"
},
"coco_2014_valminusminival": {
"img_dir": "coco/val2014",
"ann_file": "coco/annotations/instances_valminusminival2014.json"
},
"keypoints_coco_2014_train": {
"img_dir": "coco/train2014",
"ann_file": "coco/annotations/person_keypoints_train2014.json",
},
"keypoints_coco_2014_val": {
"img_dir": "coco/val2014",
"ann_file": "coco/annotations/person_keypoints_val2014.json"
},
"keypoints_coco_2014_minival": {
"img_dir": "coco/val2014",
"ann_file": "coco/annotations/person_keypoints_minival2014.json",
},
"keypoints_coco_2014_valminusminival": {
"img_dir":
"coco/val2014",
"ann_file":
"coco/annotations/person_keypoints_valminusminival2014.json",
},
"voc_2007_train": {
"data_dir": "voc/VOC2007",
"split": "train"
},
"voc_2007_train_cocostyle": {
"img_dir": "voc/VOC2007/JPEGImages",
"ann_file": "voc/VOC2007/Annotations/pascal_train2007.json"
},
"voc_2007_val": {
"data_dir": "voc/VOC2007",
"split": "val"
},
"voc_2007_val_cocostyle": {
"img_dir": "voc/VOC2007/JPEGImages",
"ann_file": "voc/VOC2007/Annotations/pascal_val2007.json"
},
"voc_2007_test": {
"data_dir": "voc/VOC2007",
"split": "test"
},
"voc_2007_test_cocostyle": {
"img_dir": "voc/VOC2007/JPEGImages",
"ann_file": "voc/VOC2007/Annotations/pascal_test2007.json"
},
"voc_2012_train": {
"data_dir": "",
"split": ""
},
"voc_2012_aug_train_cocostyle": {
"img_dir": "VOCSBD/VOC2012/JPEGImages",
"ann_file": "/VOCSBD/VOC2012/cocoAnnotations/voc_2012_train_aug.json"
},
"voc_2012_val": {
"data_dir": "",
"split": "val"
},
"voc_2012_val_cocostyle": {
"img_dir": "VOCSBD/VOC2012/JPEGImages",
"ann_file": "VOCSBD/VOC2012/cocoAnnotations/voc_2012_val_aug.json"
},
# "voc_2012_test": {
# "data_dir": "",
# "split": "test"
# # PASCAL VOC2012 doesn't made the test annotations available, so there's no json annotation
# },
"voc_2012_coco_aug_train_cocostyle": {
"img_dir": "coco/2014/",
"ann_file": "VOCSBD/VOC2012/cocoAnnotations/voc_2012_coco_train_aug.json"
},
"cityscapes_fine_instanceonly_seg_train_cocostyle": {
"img_dir":
"cityscapes/images",
"ann_file":
"cityscapes/annotations/instancesonly_filtered_gtFine_train.json"
},
"cityscapes_fine_instanceonly_seg_val_cocostyle": {
"img_dir":
"cityscapes/images",
"ann_file":
"cityscapes/annotations/instancesonly_filtered_gtFine_val.json"
},
"cityscapes_fine_instanceonly_seg_test_cocostyle": {
"img_dir":
"cityscapes/images",
"ann_file":
"cityscapes/annotations/instancesonly_filtered_gtFine_test.json"
}
}
@staticmethod
def get(name):
if "coco" in name:
data_dir = DatasetCatalog.DATA_DIR
attrs = DatasetCatalog.DATASETS[name]
args = dict(
root=os.path.join(data_dir, attrs["img_dir"]),
ann_file=os.path.join(data_dir, attrs["ann_file"]),
)
return dict(
factory="COCODataset",
args=args,
)
elif "voc" in name:
data_dir = DatasetCatalog.DATA_DIR
attrs = DatasetCatalog.DATASETS[name]
args = dict(
data_dir=os.path.join(data_dir, attrs["data_dir"]),
split=attrs["split"],
)
return dict(
factory="PascalVOCDataset",
args=args,
)
raise RuntimeError("Dataset not available: {}".format(name))
class ModelCatalog(object):
S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron"
C2_IMAGENET_MODELS = {
"MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl",
"MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl",
"MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl",
"MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl",
"FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl",
}
C2_DETECTRON_SUFFIX = "output/train/{}coco_2014_train%3A{}coco_2014_valminusminival/generalized_rcnn/model_final.pkl"
C2_DETECTRON_MODELS = {
"35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW",
"35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I",
"35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7",
"36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ",
"35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB",
"35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC",
"35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT",
"36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI",
"37129812/e2e_mask_rcnn_X-152-32x8d-FPN-IN5k_1.44x": "09_35_36.8pzTQKYK",
# keypoints
"37697547/e2e_keypoint_rcnn_R-50-FPN_1x": "08_42_54.kdzV35ao"
}
@staticmethod
def get(name):
if name.startswith("Caffe2Detectron/COCO"):
return ModelCatalog.get_c2_detectron_12_2017_baselines(name)
if name.startswith("ImageNetPretrained"):
return ModelCatalog.get_c2_imagenet_pretrained(name)
raise RuntimeError("model not present in the catalog {}".format(name))
@staticmethod
def get_c2_imagenet_pretrained(name):
prefix = ModelCatalog.S3_C2_DETECTRON_URL
name = name[len("ImageNetPretrained/"):]
name = ModelCatalog.C2_IMAGENET_MODELS[name]
url = "/".join([prefix, name])
return url
@staticmethod
def get_c2_detectron_12_2017_baselines(name):
# Detectron C2 models are stored following the structure
# prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix
# we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name>
prefix = ModelCatalog.S3_C2_DETECTRON_URL
dataset_tag = "keypoints_" if "keypoint" in name else ""
suffix = ModelCatalog.C2_DETECTRON_SUFFIX.format(dataset_tag, dataset_tag)
# remove identification prefix
name = name[len("Caffe2Detectron/COCO/"):]
# split in <model_id> and <model_name>
model_id, model_name = name.split("/")
# parsing to make it match the url address from the Caffe2 models
model_name = "{}.yaml".format(model_name)
signature = ModelCatalog.C2_DETECTRON_MODELS[name]
unique_name = ".".join([model_name, signature])
url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix])
return url