Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Performance Gap (significantly lower than reported) #11

Open
convnets opened this issue Apr 6, 2020 · 4 comments
Open

Performance Gap (significantly lower than reported) #11

convnets opened this issue Apr 6, 2020 · 4 comments

Comments

@convnets
Copy link

convnets commented Apr 6, 2020

Hi,

I have tried to reproduce the reported result. However, my results are lower than the paper claimed. The results are shown below:

Evaluating on val_seen env ...
Epoch: [205][1/16]      Time 44.433 (44.433)    Loss 0.0000 (0.0000)
Epoch: [205][2/16]      Time 41.156 (42.794)    Loss 0.0000 (0.0000)
Epoch: [205][3/16]      Time 40.692 (42.093)    Loss 0.0000 (0.0000)
Epoch: [205][4/16]      Time 49.232 (43.878)    Loss 0.0000 (0.0000)
Epoch: [205][5/16]      Time 56.059 (46.314)    Loss 0.0000 (0.0000)
Epoch: [205][6/16]      Time 50.356 (46.988)    Loss 0.0000 (0.0000)
Epoch: [205][7/16]      Time 38.051 (45.711)    Loss 0.0000 (0.0000)
Epoch: [205][8/16]      Time 38.715 (44.837)    Loss 0.0000 (0.0000)
Epoch: [205][9/16]      Time 37.932 (44.070)    Loss 0.0000 (0.0000)
Epoch: [205][10/16]     Time 38.539 (43.516)    Loss 0.0000 (0.0000)
Epoch: [205][11/16]     Time 38.241 (43.037)    Loss 0.0000 (0.0000)
Epoch: [205][12/16]     Time 47.775 (43.432)    Loss 0.0000 (0.0000)
Epoch: [205][13/16]     Time 54.741 (44.302)    Loss 0.0000 (0.0000)
Epoch: [205][14/16]     Time 52.321 (44.875)    Loss 0.0000 (0.0000)
Epoch: [205][15/16]     Time 38.056 (44.420)    Loss 0.0000 (0.0000)
Epoch: [205][16/16]     Time 37.984 (44.018)    Loss 0.0000 (0.0000)
| nav_error: 3.8490198931233213 | oracle_error: 2.3369494706951466 | steps: 6.107843137254902 | lengths: 10.45375464930404 | spl: 0.6103185273231977 | success_rate: 0.6460784313725491 | oracle_rate: 0.7294117647058823
Evaluating on val_unseen env ...
Epoch: [205][1/37]      Time 38.728 (38.728)    Loss 0.0000 (0.0000)
Epoch: [205][2/37]      Time 36.856 (37.792)    Loss 0.0000 (0.0000)
Epoch: [205][3/37]      Time 36.631 (37.405)    Loss 0.0000 (0.0000)
Epoch: [205][4/37]      Time 37.941 (37.539)    Loss 0.0000 (0.0000)
Epoch: [205][5/37]      Time 36.848 (37.401)    Loss 0.0000 (0.0000)
Epoch: [205][6/37]      Time 36.870 (37.312)    Loss 0.0000 (0.0000)
Epoch: [205][7/37]      Time 37.395 (37.324)    Loss 0.0000 (0.0000)
Epoch: [205][8/37]      Time 36.739 (37.251)    Loss 0.0000 (0.0000)
Epoch: [205][9/37]      Time 37.376 (37.265)    Loss 0.0000 (0.0000)
Epoch: [205][10/37]     Time 36.645 (37.203)    Loss 0.0000 (0.0000)
Epoch: [205][11/37]     Time 36.693 (37.156)    Loss 0.0000 (0.0000)
Epoch: [205][12/37]     Time 37.355 (37.173)    Loss 0.0000 (0.0000)
Epoch: [205][13/37]     Time 36.837 (37.147)    Loss 0.0000 (0.0000)
Epoch: [205][14/37]     Time 37.657 (37.184)    Loss 0.0000 (0.0000)
Epoch: [205][15/37]     Time 37.261 (37.189)    Loss 0.0000 (0.0000)
Epoch: [205][16/37]     Time 36.708 (37.159)    Loss 0.0000 (0.0000)
Epoch: [205][17/37]     Time 36.177 (37.101)    Loss 0.0000 (0.0000)
Epoch: [205][18/37]     Time 37.224 (37.108)    Loss 0.0000 (0.0000)
Epoch: [205][19/37]     Time 36.919 (37.098)    Loss 0.0000 (0.0000)
Epoch: [205][20/37]     Time 36.471 (37.067)    Loss 0.0000 (0.0000)
Epoch: [205][21/37]     Time 37.841 (37.103)    Loss 0.0000 (0.0000)
Epoch: [205][22/37]     Time 36.392 (37.071)    Loss 0.0000 (0.0000)
Epoch: [205][23/37]     Time 37.118 (37.073)    Loss 0.0000 (0.0000)
Epoch: [205][24/37]     Time 37.091 (37.074)    Loss 0.0000 (0.0000)
Epoch: [205][25/37]     Time 36.840 (37.064)    Loss 0.0000 (0.0000)
Epoch: [205][26/37]     Time 36.788 (37.054)    Loss 0.0000 (0.0000)
Epoch: [205][27/37]     Time 37.286 (37.062)    Loss 0.0000 (0.0000)
Epoch: [205][28/37]     Time 36.880 (37.056)    Loss 0.0000 (0.0000)
Epoch: [205][29/37]     Time 37.105 (37.058)    Loss 0.0000 (0.0000)
Epoch: [205][30/37]     Time 37.046 (37.057)    Loss 0.0000 (0.0000)
Epoch: [205][31/37]     Time 43.863 (37.277)    Loss 0.0000 (0.0000)
Epoch: [205][32/37]     Time 44.296 (37.496)    Loss 0.0000 (0.0000)
Epoch: [205][33/37]     Time 38.315 (37.521)    Loss 0.0000 (0.0000)
Epoch: [205][34/37]     Time 38.055 (37.537)    Loss 0.0000 (0.0000)
Epoch: [205][35/37]     Time 37.899 (37.547)    Loss 0.0000 (0.0000)
Epoch: [205][36/37]     Time 47.541 (37.825)    Loss 0.0000 (0.0000)
Epoch: [205][37/37]     Time 54.212 (38.267)    Loss 0.0000 (0.0000)
| nav_error: 6.141163837885611 | oracle_error: 3.6298467382790323 | steps: 6.171988080034057 | lengths: 10.225189720171494 | spl: 0.3966670362847731 | success_rate: 0.44785014899957426 | oracle_rate: 0.5798212005108557

In the paper, Table 2 (row number 7), the expected result should be
val_seen (NE | SR | OSR | SPL): 3.23 | 0.70 | 0.78 | 0.66 val_unseen(NE | SR | OSR | SPL): 5.04 | 0.57 | 0.70 | 0.51. However, I obtained val_seen SPL 0.61, 5% lower and val_unseen SPL 0.396, 12% lower.

My configurations are posted as follows:

# Name                    Version                   Build  Channel
python                    3.8.2                hcf32534_0
pytorch                   1.4.0           py3.8_cuda10.1.243_cudnn7.6.3_0    pytorch
numpy                     1.18.1           py38h4f9e942_0
networkx                  2.4                      pypi_0    pypi
torchvision               0.5.0                py38_cu101    pytorch
@convnets convnets changed the title Performance Gap (lower than reported) Performance Gap (significantly lower than reported) Apr 6, 2020
@ZhangTianrong
Copy link

I am facing the same problem here yielding almost same perforance with you. Have you found any clue?

@rmant
Copy link

rmant commented Apr 30, 2020

Same here

@convnets
Copy link
Author

convnets commented Jun 8, 2020

I am facing the same problem here yielding almost same perforance with you. Have you found any clue?

I still do not have any clue. If you find the answer, can you share with us here ? This is really wired.

@convnets
Copy link
Author

convnets commented Jun 8, 2020

Same here

If you find the answer, can you share with us here ? This is really wired.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants