-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdecode_test.go
286 lines (262 loc) · 12.9 KB
/
decode_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
conflux - Distributed database synchronization library
Based on the algorithm described in
"Set Reconciliation with Nearly Optimal Communication Complexity",
Yaron Minsky, Ari Trachtenberg, and Richard Zippel, 2004.
Copyright (c) 2012-2015 Casey Marshall <[email protected]>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package conflux
import (
"crypto/rand"
"math/big"
gc "gopkg.in/check.v1"
"gopkg.in/errgo.v1"
)
type DecodeSuite struct{}
var _ = gc.Suite(&DecodeSuite{})
func randInt(max int) int {
n, err := rand.Int(rand.Reader, big.NewInt(int64(max)))
if err != nil {
panic(err)
}
return int(n.Int64())
}
// randLinearProd randomly generates a product of
// linears (x - a0)(x - a1)...(x - an).
func randLinearProd(p *big.Int, n int) (*Poly, *ZSet) {
result := NewPoly(Zi(p, 1))
roots := NewZSet()
for i := 0; i < n; i++ {
pr := PolyRand(p, 1)
roots.Add(pr.coeff[0].Copy().Neg()) // The root is negated: a0 from (z - a0)
result = NewPoly().Mul(result, pr)
}
return result, roots
}
func factorTest(c *gc.C) {
deg := randInt(10) + 1
p := big.NewInt(int64(97))
// Create a factor-able, polynomial product of linears
poly, roots := randLinearProd(p, deg)
c.Logf("factor poly: (%v)", poly)
factoredRoots, err := poly.Factor()
c.Assert(err, gc.IsNil)
c.Logf("factoredRoots=%v ?== roots=%v", factoredRoots, roots)
c.Assert(roots.Equal(factoredRoots), gc.Equals, true,
gc.Commentf("%v !== %v", roots, factoredRoots))
}
func (s *DecodeSuite) TestFactorization(c *gc.C) {
for i := 0; i < 100; i++ {
c.Logf("Factorization #%d", i)
factorTest(c)
}
}
func (s *DecodeSuite) TestCannedInterpolation(c *gc.C) {
/*
interpolate
values=[50209572917763804813893169477404135246 523915264287429384599917983489241637041 193879208340335596473327301694891073112 336257832174512052845041381684545224326 525220581565510310465258018589146771167 369646301408454767673033771110855434260 371821946850459872311187739000814476019 144426966457292640051271632674756114101 379207879747256731229136438792149285186 46108152160169587744128314614996604924 227801899428306415871207999262631174702 207497927707680176901864453717256663645 190227327194805171829784109272423912872 ]
points=[0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 ]
d=-11
num=1 z^1 + 201510631159794911579036209221877731351
denom=1 z^12 + 129168611341530605578585909520009112853 z^11 + 49011742009925395272518613422388842885 z^10 + 209097283573511646123086148468849229449 z^9 + 91519704684961309708461769260348368047 z^8 + 451945789461805767613376502019011847396 z^7 + 278888159583692127965164290452048385915 z^6 + 323796663999875107447504850182776354321 z^5 + 276914137420158008254462690448206036905 z^4 + 496937274460702615962215989437926963535 z^3 + 213853624487129571321714452851928100712 z^2 + 295519390096665634601203803035473291375 z^1 + 471406228141421561633415986254867829648
*/
p := P_SKS
values := []*Zp{Zs(p, "50209572917763804813893169477404135246"), Zs(p, "523915264287429384599917983489241637041"), Zs(p, "193879208340335596473327301694891073112"), Zs(p, "336257832174512052845041381684545224326"), Zs(p, "525220581565510310465258018589146771167"), Zs(p, "369646301408454767673033771110855434260"), Zs(p, "371821946850459872311187739000814476019"), Zs(p, "144426966457292640051271632674756114101"), Zs(p, "379207879747256731229136438792149285186"), Zs(p, "46108152160169587744128314614996604924"), Zs(p, "227801899428306415871207999262631174702"), Zs(p, "207497927707680176901864453717256663645"), Zs(p, "190227327194805171829784109272423912872")}
points := []*Zp{Zi(p, 0), Zi(p, -1), Zi(p, 1), Zi(p, -2), Zi(p, 2), Zi(p, -3), Zi(p, 3), Zi(p, -4), Zi(p, 4), Zi(p, -5), Zi(p, 5), Zi(p, -6), Zi(p, 6)}
d := -11
rfn, err := Interpolate(values, points, d)
c.Assert(err, gc.IsNil)
c.Logf("num=%v denom=%v", rfn.Num, rfn.Denom)
numExpect := []*Zp{Zs(p, "201510631159794911579036209221877731351"), Zi(p, 1)}
denomExpect := []*Zp{
Zs(p, "471406228141421561633415986254867829648"),
Zs(p, "295519390096665634601203803035473291375"),
Zs(p, "213853624487129571321714452851928100712"),
Zs(p, "496937274460702615962215989437926963535"),
Zs(p, "276914137420158008254462690448206036905"),
Zs(p, "323796663999875107447504850182776354321"),
Zs(p, "278888159583692127965164290452048385915"),
Zs(p, "451945789461805767613376502019011847396"),
Zs(p, "91519704684961309708461769260348368047"),
Zs(p, "209097283573511646123086148468849229449"),
Zs(p, "49011742009925395272518613422388842885"),
Zs(p, "129168611341530605578585909520009112853"),
Zi(p, 1)}
for i, z := range numExpect {
c.Assert(z.String(), gc.Equals, rfn.Num.coeff[i].String())
}
for i, z := range denomExpect {
c.Assert(z.String(), gc.Equals, rfn.Denom.coeff[i].String())
}
}
func (s *DecodeSuite) TestInterpolation(c *gc.C) {
for i := 0; i < 100; i++ {
c.Logf("Interpolation #%d", i)
interpTest(c)
}
}
func interpTest(c *gc.C) {
var err error
p := P_SKS
deg := randInt(10) + 1
numDeg := randInt(deg)
denomDeg := deg - numDeg
num, _ := randLinearProd(p, numDeg)
denom, _ := randLinearProd(p, denomDeg)
c.Assert(num.degree, gc.Equals, numDeg)
c.Assert(denom.degree, gc.Equals, denomDeg)
c.Logf("num: (%v) denom: (%v)", num, denom)
mbar := randInt(9) + 1
n := mbar + 1
toobig := deg+1 > mbar
values := make([]*Zp, n)
points := make([]*Zp, n)
for i := 0; i < n; i++ {
var pi int
if i%2 == 0 {
pi = ((i + 1) / 2) * 1
} else {
pi = ((i + 1) / 2) * -1
}
points[i] = Zi(p, pi)
values[i] = Z(p).Div(num.Eval(points[i]), denom.Eval(points[i]))
}
c.Logf("values=(%v) points=(%v) degDiff=(%v)", values, points, abs(numDeg-denomDeg))
rfn, err := Interpolate(values, points, numDeg-denomDeg)
if toobig {
return
} else {
c.Assert(err, gc.IsNil)
}
c.Logf("mbar: %d, num_deg: %d, denom_deg: %d", mbar, numDeg, denomDeg)
c.Assert(num.Equal(rfn.Num), gc.Equals, true, gc.Commentf("num: (%v) != (%v)", num, rfn.Num))
c.Assert(denom.Equal(rfn.Denom), gc.Equals, true, gc.Commentf("denom: (%v) != (%v)", denom, rfn.Denom))
}
type zGenF func() *Zp
func setInit(n int, f zGenF) *ZSet {
zs := NewZSet()
for i := 0; i < n; i++ {
zs.Add(f())
}
return zs
}
func (s *DecodeSuite) TestCannedReconcile(c *gc.C) {
p := P_SKS
set1 := NewZSet()
s1items := []*Zp{Zs(p, "8952777669297728851091848378379377617"), Zs(p, "162085839528403560100929159811161460293"), Zs(p, "181484969924633124558171484324504401075"), Zs(p, "229305846979453177871691812413112208676"), Zs(p, "284001389401364703525738874626145923778"), Zs(p, "333026889954813771673937036618957938545"), Zs(p, "401537002901186069501925598757914356337"), Zs(p, "408597178507212301417184698839771487762"), Zs(p, "419504520512224794235831228788173561599"), Zs(p, "454233583376105592897174699470827876606")}
set1.AddSlice(s1items)
set2 := NewZSet()
s2items := []*Zp{Zs(p, "110633522524732890588089295220994803977"), Zs(p, "194223389264051186134544082841809104115"), Zs(p, "332150253195118153886619367406744054566"), Zs(p, "431844203966462129313295191768688911950"), Zs(p, "505931393060085050712145173574130038354")}
set2.AddSlice(s2items)
values := []*Zp{Zs(p, "325567491442841181381134847399735305017"), Zs(p, "395037391445571452972721527936312200522"), Zs(p, "383458038386494547334014086327713094385"), Zs(p, "217174866600085692973450729194577792210"), Zs(p, "385011357579896657977528957507240613253"), Zs(p, "402781597512949507740967136267068344630"), Zs(p, "232703526201630690874279192086579665024"), Zs(p, "517714262168165665799778316804817689980"), Zs(p, "32661406820901877880191293945563287049"), Zs(p, "367894599536965704928081351211416869922"), Zs(p, "277789799296462035245112840153664041656"), Zs(p, "55517351568679792361000876949275186668"), Zs(p, "262234380059790006121506334185487551936"), Zs(p, "269358796384139303257285300138875449325"), Zs(p, "230494386168101481930613981157929389116"), Zs(p, "497730714764611287106884245786790787566"), Zs(p, "51691307971910305814631217339926265833"), Zs(p, "290446399753991600191456012845409641740"), Zs(p, "427530032313331291010476618229794543878"), Zs(p, "120344848642406229503266522177541779886"), Zs(p, "399989145164239204145711147975735514135")}
points := []*Zp{Zi(p, 0), Zi(p, -1), Zi(p, 1), Zi(p, -2), Zi(p, 2), Zi(p, -3), Zi(p, 3), Zi(p, -4), Zi(p, 4), Zi(p, -5), Zi(p, 5), Zi(p, -6), Zi(p, 6), Zi(p, -7), Zi(p, 7), Zi(p, -8), Zi(p, 8), Zi(p, -9), Zi(p, 9), Zi(p, -10), Zi(p, 10)}
m1 := len(s1items)
m2 := len(s2items)
diff1, diff2, err := Reconcile(values, points, m1-m2)
c.Assert(err, gc.IsNil)
c.Logf("recon compare: %v ==? %v", diff1, set1)
c.Logf("recon compare: %v ==? %v", diff2, set2)
c.Assert(diff1, gc.DeepEquals, set1)
c.Assert(diff2, gc.DeepEquals, set2)
c.Assert(diff1.Equal(set1), gc.Equals, true)
c.Assert(diff2.Equal(set2), gc.Equals, true)
}
func (s *DecodeSuite) TestReconcile(c *gc.C) {
for i := 0; i < 100; i++ {
c.Logf("Reconcile #%d", i)
reconcileTest(c)
}
}
func reconcileTest(c *gc.C) {
p := P_SKS
mbar := randInt(20) + 1
n := mbar + 1
svalues1 := Zarray(p, n, Zi(p, 1))
svalues2 := Zarray(p, n, Zi(p, 1))
points := Zpoints(p, n)
m := randInt(mbar*2) + 1
// m1 and m2 are a partitioning of m
m1 := randInt(m)
m2 := m - m1
set1 := setInit(m1, func() *Zp { return Zrand(p) })
set2 := setInit(m2, func() *Zp { return Zrand(p) })
c.Logf("mbar: %d, n: %d, m: %d, m1: %d, m2: %d", mbar, n, m, m1, m2)
for _, s1i := range set1.Items() {
for i := 0; i < n; i++ {
svalues1[i].Mul(svalues1[i].Copy(), Z(p).Sub(points[i], s1i))
}
}
for _, s2i := range set2.Items() {
for i := 0; i < n; i++ {
svalues2[i].Mul(svalues2[i].Copy(), Z(p).Sub(points[i], s2i))
}
}
values := make([]*Zp, len(svalues1))
for i := 0; i < len(values); i++ {
values[i] = Z(p).Div(svalues1[i], svalues2[i])
}
c.Logf("values=%v\npoints=%v\nd=%v", values, points, m1-m2)
diff1, diff2, err := Reconcile(values, points, m1-m2)
if err != nil {
c.Logf("Low MBar")
c.Assert(m > mbar, gc.Equals, true, gc.Commentf("m %d > mbar %d", m, mbar))
return
}
c.Assert(err, gc.IsNil)
c.Logf("recon compare: %v ==? %v", diff1, set1)
c.Logf("recon compare: %v ==? %v", diff2, set2)
c.Assert(diff1, gc.DeepEquals, set1)
c.Assert(diff2, gc.DeepEquals, set2)
c.Assert(diff1.Equal(set1), gc.Equals, true)
c.Assert(diff2.Equal(set2), gc.Equals, true)
}
func (s *DecodeSuite) TestLowMBar(c *gc.C) {
p := P_SKS
values := []*Zp{Zs(p, "260405721246918987273155339614020972656"), Zs(p, "243393001638573476362665007855413044937"), Zs(p, "505905314437392989818278468923779137359"), Zs(p, "105358332430258313066486664282953088018"), Zs(p, "2560440886574256298562818527295701964"), Zs(p, "118746265689993312951910051444187575775"), Zs(p, "529698088600031242289045200206930982765"), Zs(p, "441488592726201746187835041000728091281")}
points := Zpoints(p, len(values))
_, _, err := Reconcile(values, points, 3)
c.Assert(errgo.Cause(err), gc.Equals, ErrLowMBar)
}
func (s *DecodeSuite) TestFactorCheck(c *gc.C) {
//factor_check x=1 z^2 + 117479252320778380699969369242473163812 z^1 + 23910866165498202015403350789738609658 zq=1 z^1 + 0 mz=530512889551602322505127520352579437338 z^1 + 0 zqmz=0
p := P_SKS
x := NewPoly(Zs(p, "23910866165498202015403350789738609658"),
Zs(p, "117479252320778380699969369242473163812"),
Zs(p, "1"))
c.Assert(factorCheck(x), gc.Equals, true, gc.Commentf("%v", x))
}
func (s *DecodeSuite) TestPolyNomNomNom(c *gc.C) {
// Values obtained from dumping an SKS unit test run.
p := P_SKS
num := NewPoly(Zs(p, "201510631159794911579036209221877731351"), Zi(p, 1))
denom := NewPoly(Zs(p, "471406228141421561633415986254867829648"),
Zs(p, "295519390096665634601203803035473291375"),
Zs(p, "213853624487129571321714452851928100712"),
Zs(p, "496937274460702615962215989437926963535"),
Zs(p, "276914137420158008254462690448206036905"),
Zs(p, "323796663999875107447504850182776354321"),
Zs(p, "278888159583692127965164290452048385915"),
Zs(p, "451945789461805767613376502019011847396"),
Zs(p, "91519704684961309708461769260348368047"),
Zs(p, "209097283573511646123086148468849229449"),
Zs(p, "49011742009925395272518613422388842885"),
Zs(p, "129168611341530605578585909520009112853"),
Zi(p, 1))
point := Zi(p, -7)
numAt := num.Eval(point)
c.Assert(numAt.String(), gc.Equals, "201510631159794911579036209221877731344")
denomAt := denom.Eval(point)
c.Assert(denomAt.String(), gc.Equals, "77151748131754717019960190430023395826")
rational := Z(p).Div(numAt, denomAt)
c.Assert(rational.String(), gc.Equals, "372597725470208235965358485960825765733")
}