-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdecompose.cpp
516 lines (511 loc) · 22.4 KB
/
decompose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpSimplex.hpp"
#include "CoinMpsIO.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
// Keep names
if (argc < 2) {
#if defined(NETLIBDIR)
status = model.readMps(NETLIBDIR "/czprob.mps", true);
#else
fprintf(stderr, "Do not know where to find netlib MPS files.\n");
return 1;
#endif
} else {
status = model.readMps(argv[1], true);
}
if (status)
exit(10);
/*
This driver does a simple Dantzig Wolfe decomposition
*/
// Get master rows in some mysterious way
int numberRows = model.numberRows();
int * rowBlock = new int[numberRows];
int iRow;
for (iRow = 0; iRow < numberRows; iRow++)
rowBlock[iRow] = -2;
// these are master rows
if (numberRows == 105127) {
// ken-18
for (iRow = 104976; iRow < numberRows; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 2426) {
// ken-7
for (iRow = 2401; iRow < numberRows; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 810) {
for (iRow = 81; iRow < 84; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 5418) {
for (iRow = 564; iRow < 603; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 10280) {
// osa-60
for (iRow = 10198; iRow < 10280; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 1503) {
// degen3
for (iRow = 0; iRow < 561; iRow++)
rowBlock[iRow] = -1;
} else if (numberRows == 929) {
// czprob
for (iRow = 0; iRow < 39; iRow++)
rowBlock[iRow] = -1;
}
CoinPackedMatrix * matrix = model.matrix();
// get row copy
CoinPackedMatrix rowCopy = *matrix;
rowCopy.reverseOrdering();
const int * row = matrix->getIndices();
const int * columnLength = matrix->getVectorLengths();
const CoinBigIndex * columnStart = matrix->getVectorStarts();
//const double * elementByColumn = matrix->getElements();
const int * column = rowCopy.getIndices();
const int * rowLength = rowCopy.getVectorLengths();
const CoinBigIndex * rowStart = rowCopy.getVectorStarts();
//const double * elementByRow = rowCopy.getElements();
int numberBlocks = 0;
int * stack = new int [numberRows];
// to say if column looked at
int numberColumns = model.numberColumns();
int * columnBlock = new int[numberColumns];
int iColumn;
for (iColumn = 0; iColumn < numberColumns; iColumn++)
columnBlock[iColumn] = -2;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
CoinBigIndex kstart = columnStart[iColumn];
CoinBigIndex kend = columnStart[iColumn] + columnLength[iColumn];
if (columnBlock[iColumn] == -2) {
// column not allocated
CoinBigIndex j;
int nstack = 0;
for (j = kstart; j < kend; j++) {
int iRow = row[j];
if (rowBlock[iRow] != -1) {
assert(rowBlock[iRow] == -2);
rowBlock[iRow] = numberBlocks; // mark
stack[nstack++] = iRow;
}
}
if (nstack) {
// new block - put all connected in
numberBlocks++;
columnBlock[iColumn] = numberBlocks - 1;
while (nstack) {
int iRow = stack[--nstack];
CoinBigIndex k;
for (k = rowStart[iRow]; k < rowStart[iRow] + rowLength[iRow]; k++) {
int iColumn = column[k];
CoinBigIndex kkstart = columnStart[iColumn];
CoinBigIndex kkend = kkstart + columnLength[iColumn];
if (columnBlock[iColumn] == -2) {
columnBlock[iColumn] = numberBlocks - 1; // mark
// column not allocated
CoinBigIndex jj;
for (jj = kkstart; jj < kkend; jj++) {
int jRow = row[jj];
if (rowBlock[jRow] == -2) {
rowBlock[jRow] = numberBlocks - 1;
stack[nstack++] = jRow;
}
}
} else {
assert(columnBlock[iColumn] == numberBlocks - 1);
}
}
}
} else {
// Only in master
columnBlock[iColumn] = -1;
}
}
}
printf("%d blocks found\n", numberBlocks);
if (numberBlocks > 50) {
int iBlock;
for (iRow = 0; iRow < numberRows; iRow++) {
iBlock = rowBlock[iRow];
if (iBlock >= 0)
rowBlock[iRow] = iBlock % 50;
}
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
iBlock = columnBlock[iColumn];
if (iBlock >= 0)
columnBlock[iColumn] = iBlock % 50;
}
numberBlocks = 50;
}
delete [] stack;
// make up problems
CoinPackedMatrix * top = new CoinPackedMatrix [numberBlocks];
ClpSimplex * sub = new ClpSimplex [numberBlocks];
ClpSimplex master;
// Create all sub problems
// Could do much faster - but do that later
int * whichRow = new int [numberRows];
int * whichColumn = new int [numberColumns];
// get top matrix
CoinPackedMatrix topMatrix = *model.matrix();
int numberRow2, numberColumn2;
numberRow2 = 0;
for (iRow = 0; iRow < numberRows; iRow++)
if (rowBlock[iRow] >= 0)
whichRow[numberRow2++] = iRow;
topMatrix.deleteRows(numberRow2, whichRow);
int iBlock;
for (iBlock = 0; iBlock < numberBlocks; iBlock++) {
numberRow2 = 0;
numberColumn2 = 0;
for (iRow = 0; iRow < numberRows; iRow++)
if (iBlock == rowBlock[iRow])
whichRow[numberRow2++] = iRow;
for (iColumn = 0; iColumn < numberColumns; iColumn++)
if (iBlock == columnBlock[iColumn])
whichColumn[numberColumn2++] = iColumn;
sub[iBlock] = ClpSimplex(&model, numberRow2, whichRow,
numberColumn2, whichColumn);
#if 0
// temp
double * upper = sub[iBlock].columnUpper();
for (iColumn = 0; iColumn < numberColumn2; iColumn++)
upper[iColumn] = 100.0;
#endif
// and top matrix
CoinPackedMatrix matrix = topMatrix;
// and delete bits
numberColumn2 = 0;
for (iColumn = 0; iColumn < numberColumns; iColumn++)
if (iBlock != columnBlock[iColumn])
whichColumn[numberColumn2++] = iColumn;
matrix.deleteCols(numberColumn2, whichColumn);
top[iBlock] = matrix;
}
// and master
numberRow2 = 0;
numberColumn2 = 0;
for (iRow = 0; iRow < numberRows; iRow++)
if (rowBlock[iRow] < 0)
whichRow[numberRow2++] = iRow;
for (iColumn = 0; iColumn < numberColumns; iColumn++)
if (columnBlock[iColumn] == -1)
whichColumn[numberColumn2++] = iColumn;
ClpModel masterModel(&model, numberRow2, whichRow,
numberColumn2, whichColumn);
master = ClpSimplex(masterModel);
delete [] whichRow;
delete [] whichColumn;
// Overkill in terms of space
int numberMasterRows = master.numberRows();
CoinBigIndex * columnAdd = new CoinBigIndex[numberBlocks+1];
int * rowAdd = new int[numberBlocks*(numberMasterRows+1)];
double * elementAdd = new double[numberBlocks*(numberMasterRows+1)];
double * objective = new double[numberBlocks];
int maxPass = 500;
int iPass;
double lastObjective = 1.0e31;
// Create convexity rows for proposals
int numberMasterColumns = master.numberColumns();
master.resize(numberMasterRows + numberBlocks, numberMasterColumns);
// Arrays to say which block and when created
int maximumColumns = 2 * numberMasterRows + 10 * numberBlocks;
int * whichBlock = new int[maximumColumns];
int * when = new int[maximumColumns];
int numberColumnsGenerated = numberBlocks;
// fill in rhs and add in artificials
{
double * rowLower = master.rowLower();
double * rowUpper = master.rowUpper();
int iBlock;
columnAdd[0] = 0;
for (iBlock = 0; iBlock < numberBlocks; iBlock++) {
int iRow = iBlock + numberMasterRows;;
rowLower[iRow] = 1.0;
rowUpper[iRow] = 1.0;
rowAdd[iBlock] = iRow;
elementAdd[iBlock] = 1.0;
objective[iBlock] = 1.0e9;
columnAdd[iBlock+1] = iBlock + 1;
when[iBlock] = -1;
whichBlock[iBlock] = iBlock;
}
master.addColumns(numberBlocks, NULL, NULL, objective,
columnAdd, rowAdd, elementAdd);
}
// and resize matrix to double check clp will be happy
//master.matrix()->setDimensions(numberMasterRows+numberBlocks,
// numberMasterColumns+numberBlocks);
for (iPass = 0; iPass < maxPass; iPass++) {
printf("Start of pass %d\n", iPass);
// Solve master - may be infeasible
master.scaling(false);
if (0) {
master.writeMps("yy.mps");
}
master.primal();
int problemStatus = master.status(); // do here as can change (delcols)
if (master.numberIterations() == 0 && iPass)
break; // finished
if (master.objectiveValue() > lastObjective - 1.0e-7 && iPass > 555)
break; // finished
lastObjective = master.objectiveValue();
// mark basic ones and delete if necessary
int iColumn;
numberColumnsGenerated = master.numberColumns() - numberMasterColumns;
for (iColumn = 0; iColumn < numberColumnsGenerated; iColumn++) {
if (master.getStatus(iColumn + numberMasterColumns) == ClpSimplex::basic)
when[iColumn] = iPass;
}
if (numberColumnsGenerated + numberBlocks > maximumColumns) {
// delete
int numberKeep = 0;
int numberDelete = 0;
int * whichDelete = new int[numberColumns];
for (iColumn = 0; iColumn < numberColumnsGenerated; iColumn++) {
if (when[iColumn] > iPass - 7) {
// keep
when[numberKeep] = when[iColumn];
whichBlock[numberKeep++] = whichBlock[iColumn];
} else {
// delete
whichDelete[numberDelete++] = iColumn + numberMasterColumns;
}
}
numberColumnsGenerated -= numberDelete;
master.deleteColumns(numberDelete, whichDelete);
delete [] whichDelete;
}
const double * dual = NULL;
bool deleteDual = false;
if (problemStatus == 0) {
dual = master.dualRowSolution();
} else if (problemStatus == 1) {
// could do composite objective
dual = master.infeasibilityRay();
deleteDual = true;
printf("The sum of infeasibilities is %g\n",
master.sumPrimalInfeasibilities());
} else if (!master.numberColumns()) {
assert(!iPass);
dual = master.dualRowSolution();
memset(master.dualRowSolution(),
0, (numberMasterRows + numberBlocks) *sizeof(double));
} else {
abort();
}
// Create objective for sub problems and solve
columnAdd[0] = 0;
int numberProposals = 0;
for (iBlock = 0; iBlock < numberBlocks; iBlock++) {
int numberColumns2 = sub[iBlock].numberColumns();
double * saveObj = new double [numberColumns2];
double * objective2 = sub[iBlock].objective();
memcpy(saveObj, objective2, numberColumns2 * sizeof(double));
// new objective
top[iBlock].transposeTimes(dual, objective2);
int i;
if (problemStatus == 0) {
for (i = 0; i < numberColumns2; i++)
objective2[i] = saveObj[i] - objective2[i];
} else {
for (i = 0; i < numberColumns2; i++)
objective2[i] = -objective2[i];
}
sub[iBlock].primal();
memcpy(objective2, saveObj, numberColumns2 * sizeof(double));
// get proposal
if (sub[iBlock].numberIterations() || !iPass) {
double objValue = 0.0;
CoinBigIndex start = columnAdd[numberProposals];
// proposal
if (sub[iBlock].isProvenOptimal()) {
const double * solution = sub[iBlock].primalColumnSolution();
top[iBlock].times(solution, elementAdd + start);
for (i = 0; i < numberColumns2; i++)
objValue += solution[i] * saveObj[i];
// See if good dj and pack down
CoinBigIndex number = start;
double dj = objValue;
if (problemStatus)
dj = 0.0;
double smallest = 1.0e100;
double largest = 0.0;
for (i = 0; i < numberMasterRows; i++) {
double value = elementAdd[start+i];
if (fabs(value) > 1.0e-15) {
dj -= dual[i] * value;
smallest = std::min(smallest, fabs(value));
largest = std::max(largest, fabs(value));
rowAdd[number] = i;
elementAdd[number++] = value;
}
}
// and convexity
dj -= dual[numberMasterRows+iBlock];
rowAdd[number] = numberMasterRows + iBlock;
elementAdd[number++] = 1.0;
// if elements large then scale?
//if (largest>1.0e8||smallest<1.0e-8)
printf("For subproblem %d smallest - %g, largest %g - dj %g\n",
iBlock, smallest, largest, dj);
if (dj < -1.0e-6 || !iPass) {
// take
objective[numberProposals] = objValue;
columnAdd[++numberProposals] = number;
when[numberColumnsGenerated] = iPass;
whichBlock[numberColumnsGenerated++] = iBlock;
}
} else if (sub[iBlock].isProvenDualInfeasible()) {
// use ray
const double * solution = sub[iBlock].unboundedRay();
top[iBlock].times(solution, elementAdd + start);
for (i = 0; i < numberColumns2; i++)
objValue += solution[i] * saveObj[i];
// See if good dj and pack down
CoinBigIndex number = start;
double dj = objValue;
double smallest = 1.0e100;
double largest = 0.0;
for (i = 0; i < numberMasterRows; i++) {
double value = elementAdd[start+i];
if (fabs(value) > 1.0e-15) {
dj -= dual[i] * value;
smallest = std::min(smallest, fabs(value));
largest = std::max(largest, fabs(value));
rowAdd[number] = i;
elementAdd[number++] = value;
}
}
// if elements large or small then scale?
//if (largest>1.0e8||smallest<1.0e-8)
printf("For subproblem ray %d smallest - %g, largest %g - dj %g\n",
iBlock, smallest, largest, dj);
if (dj < -1.0e-6) {
// take
objective[numberProposals] = objValue;
columnAdd[++numberProposals] = number;
when[numberColumnsGenerated] = iPass;
whichBlock[numberColumnsGenerated++] = iBlock;
}
} else {
abort();
}
}
delete [] saveObj;
}
if (deleteDual)
delete [] dual;
if (numberProposals)
master.addColumns(numberProposals, NULL, NULL, objective,
columnAdd, rowAdd, elementAdd);
}
// now put back a good solution
double * lower = new double[numberMasterRows+numberBlocks];
double * upper = new double[numberMasterRows+numberBlocks];
numberColumnsGenerated += numberMasterColumns;
double * sol = new double[numberColumnsGenerated];
const double * solution = master.primalColumnSolution();
const double * masterLower = master.rowLower();
const double * masterUpper = master.rowUpper();
double * fullSolution = model.primalColumnSolution();
const double * fullLower = model.columnLower();
const double * fullUpper = model.columnUpper();
const double * rowSolution = master.primalRowSolution();
double * fullRowSolution = model.primalRowSolution();
int kRow = 0;
for (iRow = 0; iRow < numberRows; iRow++) {
if (rowBlock[iRow] == -1) {
model.setRowStatus(iRow, master.getRowStatus(kRow));
fullRowSolution[iRow] = rowSolution[kRow++];
}
}
int kColumn = 0;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
if (columnBlock[iColumn] == -1) {
model.setStatus(iColumn, master.getStatus(kColumn));
fullSolution[iColumn] = solution[kColumn++];
}
}
for (iBlock = 0; iBlock < numberBlocks; iBlock++) {
// convert top bit to by rows
top[iBlock].reverseOrdering();
// zero solution
memset(sol, 0, numberColumnsGenerated * sizeof(double));
int i;
for (i = numberMasterColumns; i < numberColumnsGenerated; i++)
if (whichBlock[i-numberMasterColumns] == iBlock)
sol[i] = solution[i];
memset(lower, 0, (numberMasterRows + numberBlocks) *sizeof(double));
master.times(1.0, sol, lower);
for (iRow = 0; iRow < numberMasterRows; iRow++) {
double value = lower[iRow];
if (masterUpper[iRow] < 1.0e20)
upper[iRow] = value;
else
upper[iRow] = COIN_DBL_MAX;
if (masterLower[iRow] > -1.0e20)
lower[iRow] = value;
else
lower[iRow] = -COIN_DBL_MAX;
}
sub[iBlock].addRows(numberMasterRows, lower, upper,
top[iBlock].getVectorStarts(),
top[iBlock].getVectorLengths(),
top[iBlock].getIndices(),
top[iBlock].getElements());
sub[iBlock].primal();
const double * subSolution = sub[iBlock].primalColumnSolution();
const double * subRowSolution = sub[iBlock].primalRowSolution();
// move solution
kColumn = 0;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
if (columnBlock[iColumn] == iBlock) {
model.setStatus(iColumn, sub[iBlock].getStatus(kColumn));
fullSolution[iColumn] = subSolution[kColumn++];
}
}
assert(kColumn == sub[iBlock].numberColumns());
kRow = 0;
for (iRow = 0; iRow < numberRows; iRow++) {
if (rowBlock[iRow] == iBlock) {
model.setRowStatus(iRow, sub[iBlock].getRowStatus(kRow));
fullRowSolution[iRow] = subRowSolution[kRow++];
}
}
assert(kRow == sub[iBlock].numberRows() - numberMasterRows);
}
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
if (fullSolution[iColumn] < fullUpper[iColumn] - 1.0e-8 &&
fullSolution[iColumn] > fullLower[iColumn] + 1.0e-8) {
assert(model.getStatus(iColumn) == ClpSimplex::basic);
} else if (fullSolution[iColumn] >= fullUpper[iColumn] - 1.0e-8) {
// may help to make rest non basic
model.setStatus(iColumn, ClpSimplex::atUpperBound);
} else if (fullSolution[iColumn] <= fullLower[iColumn] + 1.0e-8) {
// may help to make rest non basic
model.setStatus(iColumn, ClpSimplex::atLowerBound);
}
}
for (iRow = 0; iRow < numberRows; iRow++)
model.setRowStatus(iRow, ClpSimplex::superBasic);
model.primal(1);
delete [] sol;
delete [] lower;
delete [] upper;
delete [] whichBlock;
delete [] when;
delete [] columnAdd;
delete [] rowAdd;
delete [] elementAdd;
delete [] objective;
delete [] top;
delete [] sub;
delete [] rowBlock;
delete [] columnBlock;
return 0;
}