-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrsHRF_conn_run.m
493 lines (446 loc) · 14.8 KB
/
rsHRF_conn_run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
function rsHRF_conn_run(data, connroinfo,v0,name,outdir,flag_pval_pwgc,flag_nii_gii);
%data: nobs x nvar (3D index)
fprintf('Connectivity analysis...\n ')
meastr = {'pwGC','CGC','PCGC','Pearson','PartialPearson','Spearman','PartialSpearman',};
para_global = rsHRF_global_para;
regmode = para_global.regmode; % for GC
for j=1:size(connroinfo,1)
fprintf('Conn %d\n',j)
roiid = connroinfo{j,1}; nroi = size(roiid,1);
flag_seedROI = connroinfo{j,2};
conn_type = connroinfo{j,3};
order = connroinfo{j,4};
ndinfo = connroinfo{j,5};
ROI = [];
for i=1:nroi
tmp = nanmean(data(:,roiid{i,1}),2) ;
ROI(:,i) = tmp;
end
if nroi==0 %&& isempty(v0)
ROI = data;
end
if ~flag_seedROI % seed map
if flag_nii_gii==1
ext_nii_gii = '.nii';
else
ext_nii_gii = '.gii';
end
smask_ind = find(var(data)>0);
dat.data = data(:,smask_ind);
dat.ROI = ROI;
dat3 = zeros(v0.dim);
if conn_type==1 || conn_type==2 || conn_type==3
if conn_type==2
conn_type = 1; % pairwise
warning('Change Contional GC to Pairwise GC')
elseif conn_type==3
conn_type = 1; % pairwise
warning('Change Partially Contioned GC to Pairwise GC')
end
disp('Pairwise GC for seed based connectivity analysis')
[M] = wgr_GC(dat,order,ndinfo,conn_type,regmode,flag_pval_pwgc);
ordeinfo = ['_order',num2str(order)];
for i=1:nroi
if nroi>1
tmp = [num2str(i),'_'];
else
tmp = '';
end
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_pwGC',ordeinfo,ext_nii_gii]);
out.outflow_pwGC{i} = fname;
gc = M.GC_Matrix_Out(i,:);
dat3(smask_ind) = gc;
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_N_pwGC',ordeinfo,ext_nii_gii]);
out.outflow_N_pwGC{i} = fname;
dat3(smask_ind) = wgr_pwgc_2normal(gc,M.nobs,order);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
if flag_pval_pwgc
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_pval_pwGC',ordeinfo,ext_nii_gii]);
out.outflow_pval_pwGC{i} = fname;
dat3(smask_ind) = M.pval_GC_Matrix_Out(i,:);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
end
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_pwGC',ordeinfo,ext_nii_gii]);
out.inflow_pwGC{i} = fname;
gc = M.GC_Matrix_In(i,:);
dat3(smask_ind) = gc;
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_N_pwGC',ordeinfo,ext_nii_gii]);
out.inflow_N_pwGC{i} = fname;
dat3(smask_ind) = wgr_pwgc_2normal(gc,M.nobs,order);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
seed_information = roiid(i,:);
save(fullfile(outdir,[connroinfo{j,6},tmp,name,'_SeedInfo_pwGC',ordeinfo,'.mat']),'seed_information');
if flag_pval_pwgc
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_pval_pwGC',ordeinfo,ext_nii_gii]);
out.inflow_pval_pwGC{i} = fname;
dat3(smask_ind) = M.pval_GC_Matrix_In(i,:);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
end
end
else
[M] = wgr_FC(dat,conn_type);
for i=1:nroi
if nroi>1
tmp = [num2str(i),'_'];
else
tmp = '';
end
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_corr_',meastr{connroinfo{j,3}},ext_nii_gii]);
out.corr{i} = fname;
dat3(smask_ind) = M.Matrix_r(i,:);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_Z_',meastr{connroinfo{j,3}},ext_nii_gii]);
out.Z{i} = fname;
dat3(smask_ind) = M.Matrix_z(i,:);
rsHRF_write_file(fname,dat3,flag_nii_gii,v0)
seed_information = roiid(i,:);
save(fullfile(outdir,[connroinfo{j,6},tmp,name,'_SeedInfo_',meastr{connroinfo{j,3}},'.mat']),'seed_information');
end
end
else %ROI to ROI
dat.data = ROI;
dat.ROI = [];
if conn_type==1 || conn_type==2 || conn_type==3 % 1:pairwise 2:conditional 3: partially conditioned
M = wgr_GC(dat,order,ndinfo, conn_type,regmode, flag_pval_pwgc);
save(fullfile(outdir,[connroinfo{j,6},name,'_',meastr{connroinfo{j,3}},'.mat']),'M','roiid');
else
M = wgr_FC(dat,conn_type);
save(fullfile(outdir,[connroinfo{j,6},name,'_Corr_',meastr{connroinfo{j,3}},'.mat']),'M','roiid');
end
end
end
function c = wgr_pwgc_2normal(gc,nobs,order)
c = (nobs-order).*gc - (order-1)/3;
c(c<0)=0;
c = sqrt(c);
function [M] = wgr_GC(dat,order,ndinfo,flag_pw_cgc,regmode,flag_pval_pwgc,m);
% flag_pw_cgc, 1: pairwise GC, 2: conditional GC, 3: partially conditioned GC.
gcstr = {'Pairwise GC','Conditional GC','Partially Conditioned GC'};
data = dat.data;
[nobs,nvar] = size(data);
ROI = dat.ROI;
[nobsROI,nROI] = size(ROI);
M.seed_num = nROI;
if nROI
if nobsROI~=nobs
error('different observations (ROI vs Data)')
end
end
if nobs<10
warning('Too few observations !')
end
fprintf('Data dimension: %d x %d\n',nobs,nvar);
if flag_pw_cgc==2 % CGC
if nobs<nvar
fprintf('#observation < #variable\n');
error('CGC stop!')
end
end
if nargin<7
m = 5000; %block size
end
M.nvar=nvar;
M.nobs=nobs;
M.order = order;
M.GC_type = gcstr{flag_pw_cgc};
M.ndinfo = ndinfo;
if flag_pw_cgc==3 % if nnz(ndinfo)==1
nd = ndinfo(1);
if isnan(nd)
nd = 6;
end
ndmax = ndinfo(2);
if isnan(ndmax)
ndmax = nd+1;
end
end
nbin = ceil(nvar/m);
indX={}; indY={};
matrix={};
matrix_out = {};
matrix_in={};
p_matrix_out={};
p_matrix_in={};
if nROI %ROI to data
nbinROI = ceil(nROI/m);
for i=1:nbinROI
if i~=nbinROI
ind_X = (i-1)*m+1:i*m ;
else
ind_X = (i-1)*m+1:nROI ;
end
indX{i} = ind_X;
for j=1:nbin
if j~=nbin
ind_Y = (j-1)*m+1:j*m ;
else
ind_Y = (j-1)*m+1:nvar ;
end
indY{j} = ind_Y;
if flag_pval_pwgc
[matrix_out{i,j}, matrix_in{i,j}, p_matrix_out{i,j}, p_matrix_in{i,j}] = ...
wgr_seedGC(ind_X,ind_Y,ROI,data,order,1,regmode);
else
[matrix_out{i,j}, matrix_in{i,j}] = wgr_seedGC(ind_X,ind_Y,ROI,data,order,0,regmode); %only pairwise.
end
end
end
else % data to data
if flag_pw_cgc==3
[y_inform_gain, cind] = wgr_init_partial_conditioning(data,[],ndmax,order);
M.information_gain = y_inform_gain;
M.condition_id = cind;
end
if flag_pw_cgc==1
[M.GC_Matrix, M.pval_Matrix] = wgr_PWGC(data,order,regmode,flag_pval_pwgc);
end
if flag_pw_cgc==2
[M.GC_Matrix, M.pval_Matrix] = rsHRF_mvgc(data',order,regmode,0,flag_pval_pwgc);
end
if flag_pw_cgc==3
[M.GC_Matrix, M.pval_Matrix] = wgr_PCGC(data,order,cind,nd,regmode,flag_pval_pwgc);
end
end
if nROI
M.GC_Matrix_Out = nan(nROI,nvar);
M.GC_Matrix_In = M.GC_Matrix_Out ;
for i=1:nbinROI
for j=1:nbin
M.GC_Matrix_Out(indX{i},indY{j}) = matrix_out{i,j};
M.GC_Matrix_In(indX{i},indY{j}) = matrix_in{i,j};
if flag_pval_pwgc
M.pval_GC_Matrix_Out(indX{i},indY{j}) = p_matrix_out{i,j};
M.pval_GC_Matrix_In(indX{i},indY{j}) = p_matrix_in{i,j};
end
end
end
else
if flag_pw_cgc==1
M.GC_Matrix_N = wgr_pwgc_2normal(M.GC_Matrix,nobs,order);
end
end
clear matrix* p_* indX indY
function [F,pvalue] = wgr_PWGC(data,order,regmode,flag_pval);
[nvar] = size(data,2);
F = zeros(nvar);
if flag_pval
pvalue = nan(nvar);
end
for drive=1:nvar
for target=1:nvar
if drive~=target
dat = data(:,[drive target])';
[F0,p0] = rsHRF_mvgc(dat,order,regmode,0,flag_pval);
F(drive,target) = F0(1,2);
pvalue(drive,target) = p0(1,2);
F(target,drive) = F0(2,1);
pvalue(target,drive) = p0(2,1);
end
end
end
function [F,pvalue] = wgr_PCGC(data,order,cind,nd,regmode,flag_pval);
[nvar] = size(data,2);
F = zeros(nvar);
if flag_pval
pvalue = nan(nvar);
end
parfor drive=1:nvar
for target=1:nvar
if drive~=target
zid = setdiff(cind(drive,:),target,'stable');
dat = data(:,[drive target zid(1:nd)])';
[F(drive,target),pvalue(drive,target)] = ...
rsHRF_mvgc(dat,order,regmode,1,flag_pval);
end
end
end
function [gc_out, gc_in, p_out, p_in] = wgr_seedGC(ind_X,ind_Y,ROI,data1,order,flag_pval,regmode);
[nvar1] = length(ind_X);
[nvar2] = length(ind_Y);
gc_out = zeros(nvar1,nvar2);
gc_in = gc_out;
if flag_pval
p_out = nan(nvar1,nvar2);
p_in = p_out;
end
parfor drive=1:nvar1
for target=1:nvar2
data = [ROI(:,ind_X(drive)) data1(:,ind_Y(target))]';
[F,pvalue] = rsHRF_mvgc(data,order,regmode,0,flag_pval);
if length(F)>1
gc_out(drive,target) = F(1,2);
gc_in(drive,target) = F(2,1);
p_out(drive,target) = pvalue(1,2);
p_in(drive,target) = pvalue(2,1);
end
end
end
function [M] = wgr_FC(dat,conn_type,m);
% conn_type, 4/5: pearson, 6/7: spearman
if conn_type==4
con_type = 'Pearson'; flag_partial=0;
elseif conn_type==5
con_type = 'Pearson'; flag_partial=1;
elseif conn_type==6
con_type = 'Spearman'; flag_partial=0;
elseif conn_type==7
con_type = 'Spearman'; flag_partial=1;
end
data = dat.data;
[nobs,nvar] = size(data);
ROI = dat.ROI;
[nobsROI,nROI] = size(ROI);
M.seed_num = nROI;
if nROI
if nobsROI~=nobs
error('different observations (ROI vs Data)')
end
end
if nobs<10
warning('Too few observations !')
end
fprintf('Data dimension: %d x %d\n',nobs,nvar);
if nargin<3
m = 5000; %block size
end
M.nvar=nvar;
M.nobs=nobs;
nbin = ceil(nvar/m);
indX={}; indY={};
matrix={};
if nROI %ROI to data
nbinROI = ceil(nROI/m);
for i=1:nbinROI
if i~=nbinROI
ind_X = (i-1)*m+1:i*m ;
else
ind_X = (i-1)*m+1:nROI ;
end
indX{i} = ind_X;
for j=1:nbin
if j~=nbin
ind_Y = (j-1)*m+1:j*m ;
else
ind_Y = (j-1)*m+1:nvar ;
end
indY{j} = ind_Y;
matrix_r{i,j} = corr(ROI(:,ind_X),data(:,ind_Y), 'type', con_type);
matrix_z{i,j} = atanh(matrix_r{i,j}) ;
end
end
else % data to data
if flag_partial % partial correlation
if nobs<nvar
fprintf('#observation < #variable\n');
error('partial correlation stop!')
end
end
if ~flag_partial
for i=1:nbin
if i~=nbin
ind_X = (i-1)*m+1:i*m ;
else
ind_X = (i-1)*m+1:nvar ;
end
indX{i} = ind_X;
for j=1:nbin
if j~=nbin
ind_Y = (j-1)*m+1:j*m ;
else
ind_Y = (j-1)*m+1:nvar ;
end
indY{j} = ind_Y;
[matrix_r{i,j},matrix_p{i,j}] = corr(data(:,ind_X),data(:,ind_Y), 'type',con_type);
matrix_z{i,j} = atanh(matrix_r{i,j}) ;
end
end
else
indX{1} = 1:nvar ; indY{1} = 1:nvar ;
[matrix_r{1,1},matrix_p{1,1}] = partialcorr(data, 'type',con_type);
matrix_z{1,1} = atanh(matrix_r{1,1}) ;
end
end
if nROI
M.Matrix_r = nan(nROI,nvar);
M.Matrix_z = M.Matrix_r;
for i=1:nbinROI
for j=1:nbin
M.Matrix_r(indX{i},indY{j}) = matrix_r{i,j};
M.Matrix_z(indX{i},indY{j}) = matrix_z{i,j};
end
end
else
M.Matrix_r = nan(nvar,nvar);
for i=1:nbin
for j=1:nbin
M.Matrix_r(indX{i},indY{j}) = matrix_r{i,j};
M.Matrix_z(indX{i},indY{j}) = matrix_z{i,j};
M.Matrix_pval(indX{i},indY{j}) = matrix_p{i,j};
end
end
M.Matrix_r(1:nvar+1:end)=0; %remove diag value.
M.Matrix_z(1:nvar+1:end)=0; %remove diag value.
M.Matrix_pval(1:nvar+1:end)=1; %remove diag value.
end
clear matrix* indX indY
function [y, ind] = wgr_init_partial_conditioning(data,seed_signal,ndmax,order)
[N,nvar] = size(data);
X=cell(nvar,1);
past_ind = repmat([1:order],N-order,1) + repmat([0:N-order-1]',1,order);
for i=1:nvar
past_data= reshape(data(past_ind,i),N-order,order);
X{i}= past_data - repmat(mean(past_data), N-order, 1); %%remove mean
end
ind=zeros(nvar,ndmax);
y=ind;
if ~isempty(seed_signal)
[N2,nvar2] = size(seed_signal);
if N~=N2
error('check #observation of seed_signal !')
else
ind = nan(nvar2,ndmax); y = ind;
parfor drive=1:nvar2
past_data = reshape(seed_signal(past_ind,drive),N-order,order);
drive_sig = past_data - repmat(mean(past_data), N-order, 1);
[y(drive,:), ind(drive,:)]=wgr_information_gain(drive_sig,X,nvar,ndmax);
end
end
else
ind = nan(nvar,ndmax); y = ind;
parfor drive=1:nvar
[y(drive,:), ind(drive,:)]=wgr_information_gain(drive,X,nvar,ndmax); %do not allow to dynamic plot
end
end
function [y, ind]= wgr_information_gain(drive,X,nvar,ndmax)
if nnz(drive)==1
indici=setdiff(1:nvar,drive);%,'stable');
t=X{drive};
else %seed signal
indici= 1:nvar ;
t=drive;
end
Zt=[]; ind=nan(1,ndmax); y = ind;
for nd=1:ndmax
n1=length(indici);
z=zeros(n1,1);
for k=1:n1
Zd=[Zt X{indici(k)}];
z(k)= wgr_MI_gaussian(Zd,t);
end
[y(1,nd), id] = max(z);
Zt = [Zt, X{indici(id)}];
ind(1,nd) = indici(id);
indici = setdiff(indici, indici(id));%,'stable');
end
function mi = wgr_MI_gaussian(Y,X)
% X: N x k_x Y: N x k_y
% condtional mutual information
% mi = gaussian mutual information X,Y
XY_cov = X'*Y; %%here we delete the factor: 1/N.
X_cov = X'*X;
Y_cov = Y'*Y;
all_cov = [X_cov XY_cov;XY_cov' Y_cov];
mi = 0.5*log(abs(det(X_cov)*det(Y_cov)/det(all_cov)));
return