-
Notifications
You must be signed in to change notification settings - Fork 203
/
Copy pathrun.py
580 lines (471 loc) · 24.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
from operator import getitem
from torchvision.transforms import Compose
from torchvision.transforms import transforms
# OUR
from utils import ImageandPatchs, ImageDataset, generatemask, getGF_fromintegral, calculateprocessingres, rgb2gray,\
applyGridpatch
# MIDAS
import midas.utils
from midas.models.midas_net import MidasNet
from midas.models.transforms import Resize, NormalizeImage, PrepareForNet
#AdelaiDepth
from lib.multi_depth_model_woauxi import RelDepthModel
from lib.net_tools import strip_prefix_if_present
# PIX2PIX : MERGE NET
from pix2pix.options.test_options import TestOptions
from pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
import time
import os
import torch
import cv2
import numpy as np
import argparse
import warnings
warnings.simplefilter('ignore', np.RankWarning)
# select device
device = torch.device("cuda")
print("device: %s" % device)
# Global variables
pix2pixmodel = None
midasmodel = None
srlnet = None
leresmodel = None
factor = None
whole_size_threshold = 3000 # R_max from the paper
GPU_threshold = 1600 - 32 # Limit for the GPU (NVIDIA RTX 2080), can be adjusted
# MAIN PART OF OUR METHOD
def run(dataset, option):
# Load merge network
opt = TestOptions().parse()
global pix2pixmodel
pix2pixmodel = Pix2Pix4DepthModel(opt)
pix2pixmodel.save_dir = './pix2pix/checkpoints/mergemodel'
pix2pixmodel.load_networks('latest')
pix2pixmodel.eval()
# Decide which depth estimation network to load
if option.depthNet == 0:
midas_model_path = "midas/model.pt"
global midasmodel
midasmodel = MidasNet(midas_model_path, non_negative=True)
midasmodel.to(device)
midasmodel.eval()
elif option.depthNet == 1:
global srlnet
srlnet = DepthNet.DepthNet()
srlnet = torch.nn.DataParallel(srlnet, device_ids=[0]).cuda()
checkpoint = torch.load('structuredrl/model.pth.tar')
srlnet.load_state_dict(checkpoint['state_dict'])
srlnet.eval()
elif option.depthNet == 2:
global leresmodel
leres_model_path = "res101.pth"
checkpoint = torch.load(leres_model_path)
leresmodel = RelDepthModel(backbone='resnext101')
leresmodel.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."),
strict=True)
del checkpoint
torch.cuda.empty_cache()
leresmodel.to(device)
leresmodel.eval()
# Generating required directories
result_dir = option.output_dir
os.makedirs(result_dir, exist_ok=True)
if option.savewholeest:
whole_est_outputpath = option.output_dir + '_wholeimage'
os.makedirs(whole_est_outputpath, exist_ok=True)
if option.savepatchs:
patchped_est_outputpath = option.output_dir + '_patchest'
os.makedirs(patchped_est_outputpath, exist_ok=True)
# Generate mask used to smoothly blend the local pathc estimations to the base estimate.
# It is arbitrarily large to avoid artifacts during rescaling for each crop.
mask_org = generatemask((3000, 3000))
mask = mask_org.copy()
# Value x of R_x defined in the section 5 of the main paper.
r_threshold_value = 0.2
if option.R0:
r_threshold_value = 0
elif option.R20:
r_threshold_value = 0.2
# Go through all images in input directory
print("start processing")
for image_ind, images in enumerate(dataset):
print('processing image', image_ind, ':', images.name)
# Load image from dataset
img = images.rgb_image
input_resolution = img.shape
scale_threshold = 3 # Allows up-scaling with a scale up to 3
# Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
# supplementary material.
whole_image_optimal_size, patch_scale = calculateprocessingres(img, option.net_receptive_field_size,
r_threshold_value, scale_threshold,
whole_size_threshold)
print('\t wholeImage being processed in :', whole_image_optimal_size)
# Generate the base estimate using the double estimation.
whole_estimate = doubleestimate(img, option.net_receptive_field_size, whole_image_optimal_size,
option.pix2pixsize, option.depthNet)
if option.R0 or option.R20:
path = os.path.join(result_dir, images.name)
if option.output_resolution == 1:
midas.utils.write_depth(path, cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]),
interpolation=cv2.INTER_CUBIC),
bits=2, colored=option.colorize_results)
else:
midas.utils.write_depth(path, whole_estimate, bits=2, colored=option.colorize_results)
continue
# Output double estimation if required
if option.savewholeest:
path = os.path.join(whole_est_outputpath, images.name)
if option.output_resolution == 1:
midas.utils.write_depth(path,
cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]),
interpolation=cv2.INTER_CUBIC), bits=2,
colored=option.colorize_results)
else:
midas.utils.write_depth(path, whole_estimate, bits=2, colored=option.colorize_results)
# Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
# small high-density regions of the image.
global factor
factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
print('Adjust factor is:', 1/factor)
# Check if Local boosting is beneficial.
if option.max_res < whole_image_optimal_size:
print("No Local boosting. Specified Max Res is smaller than R20")
path = os.path.join(result_dir, images.name)
if option.output_resolution == 1:
midas.utils.write_depth(path,
cv2.resize(whole_estimate,
(input_resolution[1], input_resolution[0]),
interpolation=cv2.INTER_CUBIC), bits=2,
colored=option.colorize_results)
else:
midas.utils.write_depth(path, whole_estimate, bits=2,
colored=option.colorize_results)
continue
# Compute the default target resolution.
if img.shape[0] > img.shape[1]:
a = 2 * whole_image_optimal_size
b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
else:
a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
b = 2 * whole_image_optimal_size
b = int(round(b / factor))
a = int(round(a / factor))
# recompute a, b and saturate to max res.
if max(a,b) > option.max_res:
print('Default Res is higher than max-res: Reducing final resolution')
if img.shape[0] > img.shape[1]:
a = option.max_res
b = round(option.max_res * img.shape[1] / img.shape[0])
else:
a = round(option.max_res * img.shape[0] / img.shape[1])
b = option.max_res
b = int(b)
a = int(a)
img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
# Extract selected patches for local refinement
base_size = option.net_receptive_field_size*2
patchset = generatepatchs(img, base_size)
print('Target resolution: ', img.shape)
# Computing a scale in case user prompted to generate the results as the same resolution of the input.
# Notice that our method output resolution is independent of the input resolution and this parameter will only
# enable a scaling operation during the local patch merge implementation to generate results with the same resolution
# as the input.
if option.output_resolution == 1:
mergein_scale = input_resolution[0] / img.shape[0]
print('Dynamicly change merged-in resolution; scale:', mergein_scale)
else:
mergein_scale = 1
imageandpatchs = ImageandPatchs(option.data_dir, images.name, patchset, img, mergein_scale)
whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
print('\t Resulted depthmap res will be :', whole_estimate_resized.shape[:2])
print('patchs to process: '+str(len(imageandpatchs)))
# Enumerate through all patches, generate their estimations and refining the base estimate.
for patch_ind in range(len(imageandpatchs)):
# Get patch information
patch = imageandpatchs[patch_ind] # patch object
patch_rgb = patch['patch_rgb'] # rgb patch
patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
rect = patch['rect'] # patch size and location
patch_id = patch['id'] # patch ID
org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
print('\t processing patch', patch_ind, '|', rect)
# We apply double estimation for patches. The high resolution value is fixed to twice the receptive
# field size of the network for patches to accelerate the process.
patch_estimation = doubleestimate(patch_rgb, option.net_receptive_field_size, option.patch_netsize,
option.pix2pixsize, option.depthNet)
# Output patch estimation if required
if option.savepatchs:
path = os.path.join(patchped_est_outputpath, imageandpatchs.name + '_{:04}'.format(patch_id))
midas.utils.write_depth(path, patch_estimation, bits=2, colored=option.colorize_results)
patch_estimation = cv2.resize(patch_estimation, (option.pix2pixsize, option.pix2pixsize),
interpolation=cv2.INTER_CUBIC)
patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (option.pix2pixsize, option.pix2pixsize),
interpolation=cv2.INTER_CUBIC)
# Merging the patch estimation into the base estimate using our merge network:
# We feed the patch estimation and the same region from the updated base estimate to the merge network
# to generate the target estimate for the corresponding region.
pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
# Run merging network
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
mapped = prediction_mapped
# We use a simple linear polynomial to make sure the result of the merge network would match the values of
# base estimate
p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
# Get patch size and location
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
# To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
# and resize it to our needed size while merging the patches.
if mask.shape != org_size:
mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
tobemergedto = imageandpatchs.estimation_updated_image
# Update the whole estimation:
# We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
# blending at the boundaries of the patch region.
tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
imageandpatchs.set_updated_estimate(tobemergedto)
# Output the result
path = os.path.join(result_dir, imageandpatchs.name)
if option.output_resolution == 1:
midas.utils.write_depth(path,
cv2.resize(imageandpatchs.estimation_updated_image,
(input_resolution[1], input_resolution[0]),
interpolation=cv2.INTER_CUBIC), bits=2, colored=option.colorize_results)
else:
midas.utils.write_depth(path, imageandpatchs.estimation_updated_image, bits=2, colored=option.colorize_results)
print("finished")
# Generating local patches to perform the local refinement described in section 6 of the main paper.
def generatepatchs(img, base_size):
# Compute the gradients as a proxy of the contextual cues.
img_gray = rgb2gray(img)
whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
threshold = whole_grad[whole_grad > 0].mean()
whole_grad[whole_grad < threshold] = 0
# We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
gf = whole_grad.sum()/len(whole_grad.reshape(-1))
grad_integral_image = cv2.integral(whole_grad)
# Variables are selected such that the initial patch size would be the receptive field size
# and the stride is set to 1/3 of the receptive field size.
blsize = int(round(base_size/2))
stride = int(round(blsize*0.75))
# Get initial Grid
patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
# Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
# each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
print("Selecting patchs ...")
patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
# Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
# patch
patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
return patchset
# Adaptively select patches
def adaptiveselection(integral_grad, patch_bound_list, gf):
patchlist = {}
count = 0
height, width = integral_grad.shape
search_step = int(32/factor)
# Go through all patches
for c in range(len(patch_bound_list)):
# Get patch
bbox = patch_bound_list[str(c)]['rect']
# Compute the amount of gradients present in the patch from the integral image.
cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
# Check if patching is beneficial by comparing the gradient density of the patch to
# the gradient density of the whole image
if cgf >= gf:
bbox_test = bbox.copy()
patchlist[str(count)] = {}
# Enlarge each patch until the gradient density of the patch is equal
# to the whole image gradient density
while True:
bbox_test[0] = bbox_test[0] - int(search_step/2)
bbox_test[1] = bbox_test[1] - int(search_step/2)
bbox_test[2] = bbox_test[2] + search_step
bbox_test[3] = bbox_test[3] + search_step
# Check if we are still within the image
if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
or bbox_test[0] + bbox_test[2] >= width:
break
# Compare gradient density
cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
if cgf < gf:
break
bbox = bbox_test.copy()
# Add patch to selected patches
patchlist[str(count)]['rect'] = bbox
patchlist[str(count)]['size'] = bbox[2]
count = count + 1
# Return selected patches
return patchlist
# Generate a double-input depth estimation
def doubleestimate(img, size1, size2, pix2pixsize, net_type):
# Generate the low resolution estimation
estimate1 = singleestimate(img, size1, net_type)
# Resize to the inference size of merge network.
estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Generate the high resolution estimation
estimate2 = singleestimate(img, size2, net_type)
# Resize to the inference size of merge network.
estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Inference on the merge model
pix2pixmodel.set_input(estimate1, estimate2)
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
torch.max(prediction_mapped) - torch.min(prediction_mapped))
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
return prediction_mapped
# Generate a single-input depth estimation
def singleestimate(img, msize, net_type):
if msize > GPU_threshold:
print(" \t \t DEBUG| GPU THRESHOLD REACHED", msize, '--->', GPU_threshold)
msize = GPU_threshold
if net_type == 0:
return estimatemidas(img, msize)
elif net_type == 1:
return estimatesrl(img, msize)
elif net_type == 2:
return estimateleres(img, msize)
# Inference on SGRNet
def estimatesrl(img, msize):
# SGRNet forward pass script adapted from https://github.com/KexianHust/Structure-Guided-Ranking-Loss
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img_resized = cv2.resize(img, (msize, msize), interpolation=cv2.INTER_CUBIC).astype('float32')
tensor_img = img_transform(img_resized)
# Forward pass
input_img = torch.autograd.Variable(tensor_img.cuda().unsqueeze(0), volatile=True)
with torch.no_grad():
output = srlnet(input_img)
# Normalization
depth = output.squeeze().cpu().data.numpy()
min_d, max_d = depth.min(), depth.max()
depth_norm = (depth - min_d) / (max_d - min_d)
depth_norm = cv2.resize(depth_norm, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
return depth_norm
# Inference on MiDas-v2
def estimatemidas(img, msize):
# MiDas -v2 forward pass script adapted from https://github.com/intel-isl/MiDaS/tree/v2
transform = Compose(
[
Resize(
msize,
msize,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
img_input = transform({"image": img})["image"]
# Forward pass
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
prediction = midasmodel.forward(sample)
prediction = prediction.squeeze().cpu().numpy()
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
# Normalization
depth_min = prediction.min()
depth_max = prediction.max()
if depth_max - depth_min > np.finfo("float").eps:
prediction = (prediction - depth_min) / (depth_max - depth_min)
else:
prediction = 0
return prediction
def scale_torch(img):
"""
Scale the image and output it in torch.tensor.
:param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
:param scale: the scale factor. float
:return: img. [C, H, W]
"""
if len(img.shape) == 2:
img = img[np.newaxis, :, :]
if img.shape[2] == 3:
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
img = transform(img.astype(np.float32))
else:
img = img.astype(np.float32)
img = torch.from_numpy(img)
return img
# Inference on LeRes
def estimateleres(img, msize):
# LeReS forward pass script adapted from https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
rgb_c = img[:, :, ::-1].copy()
A_resize = cv2.resize(rgb_c, (msize, msize))
img_torch = scale_torch(A_resize)[None, :, :, :]
# Forward pass
with torch.no_grad():
prediction = leresmodel.inference(img_torch)
prediction = prediction.squeeze().cpu().numpy()
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
return prediction
if __name__ == "__main__":
# Adding necessary input arguments
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data_dir', type=str, required=True, help='input files directory '
'Images can be .png .jpg .tiff')
parser.add_argument('--output_dir', type=str, required=True, help='result dir. result depth will be png.'
' vides are JMPG as avi')
parser.add_argument('--savepatchs', type=int, default=0, required=False,
help='Activate to save the patch estimations')
parser.add_argument('--savewholeest', type=int, default=0, required=False,
help='Activate to save the base estimations')
parser.add_argument('--output_resolution', type=int, default=1, required=False,
help='0 for results in maximum resolution 1 for resize to input size')
parser.add_argument('--net_receptive_field_size', type=int, required=False) # Do not set the value here
parser.add_argument('--pix2pixsize', type=int, default=1024, required=False) # Do not change it
parser.add_argument('--depthNet', type=int, default=0, required=False,
help='use to select different base depth networks 0:midas 1:strurturedRL 2:LeRes')
parser.add_argument('--colorize_results', action='store_true')
parser.add_argument('--R0', action='store_true')
parser.add_argument('--R20', action='store_true')
parser.add_argument('--Final', action='store_true')
parser.add_argument('--max_res', type=float, default=np.inf)
# Check for required input
option_, _ = parser.parse_known_args()
print(option_)
if int(option_.R0) + int(option_.R20) + int(option_.Final) == 0:
assert False, 'Please activate one of the [R0, R20, Final] options using --[R0]'
elif int(option_.R0) + int(option_.R20) + int(option_.Final) > 1:
assert False, 'Please activate only ONE of the [R0, R20, Final] options'
if option_.depthNet == 1:
from structuredrl.models import DepthNet
# Setting each networks receptive field and setting the patch estimation resolution to twice the receptive
# field size to speed up the local refinement as described in the section 6 of the main paper.
if option_.depthNet == 0:
option_.net_receptive_field_size = 384
option_.patch_netsize = 2*option_.net_receptive_field_size
elif option_.depthNet == 1:
option_.net_receptive_field_size = 448
option_.patch_netsize = 2*option_.net_receptive_field_size
elif option_.depthNet == 2:
option_.net_receptive_field_size = 448
option_.patch_netsize = 2 * option_.net_receptive_field_size
else:
assert False, 'depthNet can only be 0,1 or 2'
# Create dataset from input images
dataset_ = ImageDataset(option_.data_dir, 'test')
# Run pipeline
run(dataset_, option_)