-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
store.go
407 lines (351 loc) · 10.9 KB
/
store.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
package cachekv
import (
"bytes"
"io"
"sort"
"sync"
"cosmossdk.io/math"
"cosmossdk.io/store/cachekv/internal"
dbm "cosmossdk.io/store/db"
"cosmossdk.io/store/internal/conv"
"cosmossdk.io/store/internal/kv"
"cosmossdk.io/store/tracekv"
"cosmossdk.io/store/types"
)
// cValue represents a cached value.
// If dirty is true, it indicates the cached value is different from the underlying value.
type cValue struct {
value []byte
dirty bool
}
// Store wraps an in-memory cache around an underlying types.KVStore.
type Store struct {
mtx sync.Mutex
cache map[string]*cValue
unsortedCache map[string]struct{}
sortedCache internal.BTree // always ascending sorted
parent types.KVStore
}
var _ types.CacheKVStore = (*Store)(nil)
// NewStore creates a new Store object
func NewStore(parent types.KVStore) *Store {
return &Store{
cache: make(map[string]*cValue),
unsortedCache: make(map[string]struct{}),
sortedCache: internal.NewBTree(),
parent: parent,
}
}
// GetStoreType implements Store.
func (store *Store) GetStoreType() types.StoreType {
return store.parent.GetStoreType()
}
// Get implements types.KVStore.
func (store *Store) Get(key []byte) (value []byte) {
store.mtx.Lock()
defer store.mtx.Unlock()
types.AssertValidKey(key)
cacheValue, ok := store.cache[conv.UnsafeBytesToStr(key)]
if !ok {
value = store.parent.Get(key)
store.setCacheValue(key, value, false)
} else {
value = cacheValue.value
}
return value
}
// Set implements types.KVStore.
func (store *Store) Set(key, value []byte) {
types.AssertValidKey(key)
types.AssertValidValue(value)
store.mtx.Lock()
defer store.mtx.Unlock()
store.setCacheValue(key, value, true)
}
// Has implements types.KVStore.
func (store *Store) Has(key []byte) bool {
value := store.Get(key)
return value != nil
}
// Delete implements types.KVStore.
func (store *Store) Delete(key []byte) {
types.AssertValidKey(key)
store.mtx.Lock()
defer store.mtx.Unlock()
store.setCacheValue(key, nil, true)
}
func (store *Store) resetCaches() {
if len(store.cache) > 100_000 {
// Cache is too large. We likely did something linear time
// (e.g. Epoch block, Genesis block, etc). Free the old caches from memory, and let them get re-allocated.
// TODO: In a future CacheKV redesign, such linear workloads should get into a different cache instantiation.
// 100_000 is arbitrarily chosen as it solved Osmosis' InitGenesis RAM problem.
store.cache = make(map[string]*cValue)
store.unsortedCache = make(map[string]struct{})
} else {
// Clear the cache using the map clearing idiom
// and not allocating fresh objects.
// Please see https://bencher.orijtech.com/perfclinic/mapclearing/
for key := range store.cache {
delete(store.cache, key)
}
for key := range store.unsortedCache {
delete(store.unsortedCache, key)
}
}
store.sortedCache = internal.NewBTree()
}
// Implements Cachetypes.KVStore.
func (store *Store) Write() {
store.mtx.Lock()
defer store.mtx.Unlock()
if len(store.cache) == 0 && len(store.unsortedCache) == 0 {
store.sortedCache = internal.NewBTree()
return
}
type cEntry struct {
key string
val *cValue
}
// We need a copy of all of the keys.
// Not the best. To reduce RAM pressure, we copy the values as well
// and clear out the old caches right after the copy.
sortedCache := make([]cEntry, 0, len(store.cache))
for key, dbValue := range store.cache {
if dbValue.dirty {
sortedCache = append(sortedCache, cEntry{key, dbValue})
}
}
store.resetCaches()
sort.Slice(sortedCache, func(i, j int) bool {
return sortedCache[i].key < sortedCache[j].key
})
// TODO: Consider allowing usage of Batch, which would allow the write to
// at least happen atomically.
for _, obj := range sortedCache {
// We use []byte(key) instead of conv.UnsafeStrToBytes because we cannot
// be sure if the underlying store might do a save with the byteslice or
// not. Once we get confirmation that .Delete is guaranteed not to
// save the byteslice, then we can assume only a read-only copy is sufficient.
if obj.val.value != nil {
// It already exists in the parent, hence update it.
store.parent.Set([]byte(obj.key), obj.val.value)
} else {
store.parent.Delete([]byte(obj.key))
}
}
}
// CacheWrap implements CacheWrapper.
func (store *Store) CacheWrap() types.CacheWrap {
return NewStore(store)
}
// CacheWrapWithTrace implements the CacheWrapper interface.
func (store *Store) CacheWrapWithTrace(w io.Writer, tc types.TraceContext) types.CacheWrap {
return NewStore(tracekv.NewStore(store, w, tc))
}
//----------------------------------------
// Iteration
// Iterator implements types.KVStore.
func (store *Store) Iterator(start, end []byte) types.Iterator {
return store.iterator(start, end, true)
}
// ReverseIterator implements types.KVStore.
func (store *Store) ReverseIterator(start, end []byte) types.Iterator {
return store.iterator(start, end, false)
}
func (store *Store) iterator(start, end []byte, ascending bool) types.Iterator {
store.mtx.Lock()
defer store.mtx.Unlock()
store.dirtyItems(start, end)
isoSortedCache := store.sortedCache.Copy()
var (
err error
parent, cache types.Iterator
)
if ascending {
parent = store.parent.Iterator(start, end)
cache, err = isoSortedCache.Iterator(start, end)
} else {
parent = store.parent.ReverseIterator(start, end)
cache, err = isoSortedCache.ReverseIterator(start, end)
}
if err != nil {
panic(err)
}
return internal.NewCacheMergeIterator(parent, cache, ascending)
}
func findStartIndex(strL []string, startQ string) int {
// Modified binary search to find the very first element in >=startQ.
if len(strL) == 0 {
return -1
}
var left, right, mid int
right = len(strL) - 1
for left <= right {
mid = (left + right) >> 1
midStr := strL[mid]
if midStr == startQ {
// Handle condition where there might be multiple values equal to startQ.
// We are looking for the very first value < midStL, that i+1 will be the first
// element >= midStr.
for i := mid - 1; i >= 0; i-- {
if strL[i] != midStr {
return i + 1
}
}
return 0
}
if midStr < startQ {
left = mid + 1
} else { // midStrL > startQ
right = mid - 1
}
}
if left >= 0 && left < len(strL) && strL[left] >= startQ {
return left
}
return -1
}
func findEndIndex(strL []string, endQ string) int {
if len(strL) == 0 {
return -1
}
// Modified binary search to find the very first element <endQ.
var left, right, mid int
right = len(strL) - 1
for left <= right {
mid = (left + right) >> 1
midStr := strL[mid]
if midStr == endQ {
// Handle condition where there might be multiple values equal to startQ.
// We are looking for the very first value < midStL, that i+1 will be the first
// element >= midStr.
for i := mid - 1; i >= 0; i-- {
if strL[i] < midStr {
return i + 1
}
}
return 0
}
if midStr < endQ {
left = mid + 1
} else { // midStrL > startQ
right = mid - 1
}
}
// Binary search failed, now let's find a value less than endQ.
for i := right; i >= 0; i-- {
if strL[i] < endQ {
return i
}
}
return -1
}
type sortState int
const (
stateUnsorted sortState = iota
stateAlreadySorted
)
const minSortSize = 1024
// Constructs a slice of dirty items, to use w/ memIterator.
func (store *Store) dirtyItems(start, end []byte) {
startStr, endStr := conv.UnsafeBytesToStr(start), conv.UnsafeBytesToStr(end)
if end != nil && startStr > endStr {
// Nothing to do here.
return
}
n := len(store.unsortedCache)
unsorted := make([]*kv.Pair, 0) //nolint:staticcheck // We are in store v1.
// If the unsortedCache is too big, its costs too much to determine
// what's in the subset we are concerned about.
// If you are interleaving iterator calls with writes, this can easily become an
// O(N^2) overhead.
// Even without that, too many range checks eventually becomes more expensive
// than just not having the cache.
if n < minSortSize {
for key := range store.unsortedCache {
// dbm.IsKeyInDomain is nil safe and returns true iff key is greater than start
if dbm.IsKeyInDomain(conv.UnsafeStrToBytes(key), start, end) {
cacheValue := store.cache[key]
unsorted = append(unsorted, &kv.Pair{Key: []byte(key), Value: cacheValue.value}) //nolint:staticcheck // We are in store v1.
}
}
store.clearUnsortedCacheSubset(unsorted, stateUnsorted)
return
}
// Otherwise it is large so perform a modified binary search to find
// the target ranges for the keys that we should be looking for.
strL := make([]string, 0, n)
for key := range store.unsortedCache {
strL = append(strL, key)
}
sort.Strings(strL)
// Now find the values within the domain
// [start, end)
startIndex := findStartIndex(strL, startStr)
if startIndex < 0 {
startIndex = 0
}
var endIndex int
if end == nil {
endIndex = len(strL) - 1
} else {
endIndex = findEndIndex(strL, endStr)
}
if endIndex < 0 {
endIndex = len(strL) - 1
}
// Since we spent cycles to sort the values, we should process and remove a reasonable amount
// ensure start to end is at least minSortSize in size
// if below minSortSize, expand it to cover additional values
// this amortizes the cost of processing elements across multiple calls
if endIndex-startIndex < minSortSize {
endIndex = math.Min(startIndex+minSortSize, len(strL)-1)
if endIndex-startIndex < minSortSize {
startIndex = math.Max(endIndex-minSortSize, 0)
}
}
kvL := make([]*kv.Pair, 0, 1+endIndex-startIndex) //nolint:staticcheck // We are in store v1.
for i := startIndex; i <= endIndex; i++ {
key := strL[i]
cacheValue := store.cache[key]
kvL = append(kvL, &kv.Pair{Key: []byte(key), Value: cacheValue.value}) //nolint:staticcheck // We are in store v1.
}
// kvL was already sorted so pass it in as is.
store.clearUnsortedCacheSubset(kvL, stateAlreadySorted)
}
func (store *Store) clearUnsortedCacheSubset(unsorted []*kv.Pair, sortState sortState) { //nolint:staticcheck // We are in store v1.
n := len(store.unsortedCache)
if len(unsorted) == n { // This pattern allows the Go compiler to emit the map clearing idiom for the entire map.
for key := range store.unsortedCache {
delete(store.unsortedCache, key)
}
} else { // Otherwise, normally delete the unsorted keys from the map.
for _, kv := range unsorted {
delete(store.unsortedCache, conv.UnsafeBytesToStr(kv.Key))
}
}
if sortState == stateUnsorted {
sort.Slice(unsorted, func(i, j int) bool {
return bytes.Compare(unsorted[i].Key, unsorted[j].Key) < 0
})
}
for _, item := range unsorted {
// sortedCache is able to store `nil` value to represent deleted items.
store.sortedCache.Set(item.Key, item.Value)
}
}
//----------------------------------------
// etc
// Only entrypoint to mutate store.cache.
// A `nil` value means a deletion.
func (store *Store) setCacheValue(key, value []byte, dirty bool) {
keyStr := conv.UnsafeBytesToStr(key)
store.cache[keyStr] = &cValue{
value: value,
dirty: dirty,
}
if dirty {
store.unsortedCache[keyStr] = struct{}{}
}
}