Skip to content

Latest commit

 

History

History
129 lines (113 loc) · 4.57 KB

README.md

File metadata and controls

129 lines (113 loc) · 4.57 KB

Constructor

A tiny tool to make data-parsing and constructing deadly easy.

Just write a few tags and no more loading code anymore. A complex example:

type LevelReward struct {
	MinLevel int32
	RewardId int64
}

type RewardCfg struct {
	ID      int64
	Mode    int32
	Value   int32
	Reward  int32
	Reward2 string         // 1:50001,11:50001,16:50001,21:50001,23:50001
	Rewards []*LevelReward `cvt:"from(Reward2)|split(,)|map(split(:,int32)|obj(LevelReward))|sort(MinLevel)"`
}

type RewardCfgs struct {
	Data []*RewardCfg
	Dict map[int64]*RewardCfg           `cvt:"from(Data)|dict(ID)"`
	Mode map[int32]map[int64]*RewardCfg `cvt:"from(Data)|group(Mode, dict(ID))"`
}


var tableCsv = `
ID,Mode,Value,Reward,Reward2,DESC
1,1,1,50001,"11:50002,1:50001,16:50003,21:50004,23:50005","第一档奖励"
2,1,3,50002,"1:50002,11:50002,16:50002,21:50002,23:50002","第二档奖励"
3,1,6,50003,"1:50003,11:50003,16:50003,21:50003,23:50003","第三档奖励"`


r := &RewardCfgs{}
LoadAndConstruct(&r.Data, tableCsv, r)

Usage

converter1(args...) | converter2(args...) | converter3(args...) | converter4(args...)...
类似unix管道,上个函数的输出用|作为下个函数的输入,然后级联下去。

  • 输入"1,2,3"给split(,)
    • 结果["1", "2", "3"]
  • 输入["1", "2", "3"]给map(int)
    • 结果[1,2,3]
  • 输入"1,2,3"给split(,,int)
    • 结果[1,2,3]
    • 效果相当于split(,)|map(int)
  • 输入"1:11,2:22"给split(,)|map(split(:,int))
    • 结果[[1,11], [2,22]]
  • 输入[{a:1,b:2}, {a:11,b:22}]给dict(a)
    • 结果{1:{a:1,b:2}, 11:{a:11,b:22}}
  • 输入[{a:1,b:2}, {a:1,b:22}]给group(a)
    • 结果{ 1:[{a:1,b:2}, {a:1,b:22}] }
  • 输入[{a:1,b:2}, {a:1,b:22}]给group(a,dict(b))
    • 结果{ 1:{ 2: {a:1,b:2}, 22:{a:1,b:22} } }

Please check the unit tests for usage.

All supported converters

  • from(field)
    从单个指定字段提取值
    • input: none
    • output: field value
  • from(field, [field]...)
    从多个字段依次提取值生成数组
    • input: none
    • output: slice of field values
  • split(sep)
    将输入字符串分割成字符串数组
    • input: string
    • output: slice of string
  • split(sep, fn)
    将输入字符串分割成字符串数组,再对每个元素用fn进行转换
    • input: string
    • output: slice of value converted by fn
  • select(idx)
    选择输入数组的第idx个元素
    • input: slice
    • output: slice element at idx
  • map(fn)
    将输入数组的每个元素用fn进行转换,生成新的数组
    • input: slice
    • output: slice of return value of fn
  • dict(key_field)
    将输入的对象数组按照指定字段的值最为键,对象作为值,生成字典
    • input: slice of struct pointer
    • output: dict with key_field as key and struct pointer as value
  • dict(key_fn, val_fn)
    将输入的对象数组的每个元素传给key_fn生成key,再传给val_fn生成val,用key,val填入字典
    • input: slice of slice
    • output: sub slice as input of key convertor and result as key, same to val.
  • obj(type)
    用type创建一个对象,将输入的数组的每个元素依次赋值给这个对象的每个字段。
    • input: slice
    • output: instance of type with fields assigned from slice elements
  • obj(type, [field,]...)
    用type创建一个对象,将输入的数组的每个元素赋值给这个对象的字段,赋值顺序根据field参数指定。
    • input: slice
    • output: instance of type with fields assigned from slice elements
  • group(field)
    对对象数组的每个元素,以字段值为键,相同键的对象组成数组作为值,生成字典
    • input: slice of struct
    • output: dict of slice of struct, with field as key
  • group(field, reduce)
    类似group(field),只是值数组会输入到reduce函数生成结果,来作为新的值
    • input: slice of struct
    • output: dict of slice of struct, with field as key and slice reduced by reduce converter
  • sort(field) / sort(field, desc)
    按字段对对象数组进行排序,desc表示降序,默认升序。
    • input: slice of struct
    • output: slice sorted by field

Performance

  • Benchmark result:
cpu: AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx  
Benchmark_LoadAndConstruct
Benchmark_LoadAndConstruct-8   	   13798	     81496 ns/op	   13768 B/op	     443 allocs/op
Benchmark_LoadManually
Benchmark_LoadManually-8       	   24094	     49473 ns/op	   10229 B/op	     157 allocs/op

Other related tools: