-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·292 lines (237 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import numpy as np
from collections import OrderedDict
import cv2
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from src.data_readers.factory import dataset_factory
import lietorch
from lietorch import SE3
from src.geom.losses import geodesic_loss
# network
from src.model import ViTEss
from src.logger import Logger
# DDP training
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
import random
from datetime import datetime
import os
def setup_ddp(gpu, args):
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=gpu)
torch.manual_seed(0)
torch.cuda.set_device(gpu)
def train(gpu, args):
""" Test to make sure project transform correctly maps points """
# coordinate multiple GPUs
if not args.no_ddp:
setup_ddp(gpu, args)
rng = np.random.default_rng(12345)
random.seed(0)
thiscuda = 'cuda:%d' % gpu
map_location = {'cuda:%d' % 0: thiscuda}
args.map_location = map_location
if args.no_ddp:
args.map_location = ''
thiscuda = 'cuda:0'
model = ViTEss(args)
model.to(thiscuda)
model.train()
# unused layers
for param in model.resnet.layer4.parameters():
param.requires_grad = False
for param in model.resnet.layer3.parameters():
param.requires_grad = False
if not args.no_ddp:
model = DDP(model, device_ids=[gpu], find_unused_parameters=False)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
pct_warmup = args.warmup / args.steps
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
args.lr, args.steps, pct_start=pct_warmup, div_factor=25, cycle_momentum=False)
if args.ckpt is not None:
print('loading separate checkpoint')
if args.no_ddp:
existing_ckpt = torch.load(args.ckpt)
else:
existing_ckpt = torch.load(args.ckpt, map_location=map_location)
model.load_state_dict(existing_ckpt['model'], strict=False)
optimizer.load_state_dict(existing_ckpt['optimizer'])
del existing_ckpt
elif args.existing_ckpt is not None:
if args.no_ddp:
existing_ckpt = torch.load(args.existing_ckpt)
state_dict = OrderedDict([
(k.replace("module.", ""), v) for (k, v) in existing_ckpt['model'].items()])
model.load_state_dict(state_dict)
del state_dict
optimizer.load_state_dict(existing_ckpt['optimizer'])
if 'scheduler' in existing_ckpt:
scheduler.load_state_dict(existing_ckpt['scheduler'])
else:
existing_ckpt = torch.load(args.existing_ckpt, map_location=map_location)
model.load_state_dict(existing_ckpt['model'])
optimizer.load_state_dict(existing_ckpt['optimizer'])
if 'scheduler' in existing_ckpt:
scheduler.load_state_dict(existing_ckpt['scheduler'])
print('loading existing checkpoint')
del existing_ckpt
logger = Logger(args.name, scheduler)
should_keep_training = True
subepoch = 0
train_steps = 0
epoch_count = 0
while should_keep_training:
is_training = True
train_val = 'train'
if subepoch == 10:
"""
validate!
"""
is_training = False
train_val = 'val'
db = dataset_factory([args.dataset], datapath=args.datapath, \
subepoch=subepoch, \
is_training=is_training, gpu=gpu,
streetlearn_interiornet_type=args.streetlearn_interiornet_type, use_mini_dataset=args.use_mini_dataset)
if not args.no_ddp:
train_sampler = torch.utils.data.distributed.DistributedSampler(
db, shuffle=is_training, num_replicas=args.world_size, rank=gpu)
train_loader = DataLoader(db, batch_size=args.batch, sampler=train_sampler, num_workers=args.num_workers, pin_memory=True)
else:
train_loader = DataLoader(db, batch_size=args.batch, num_workers=1,shuffle=False)
model.train()
if not is_training:
model.eval()
with tqdm(train_loader, unit="batch") as tepoch:
for i_batch, item in enumerate(tepoch):
optimizer.zero_grad()
images, poses, intrinsics = [x.to('cuda') for x in item]
Ps = SE3(poses)
Gs = SE3.IdentityLike(Ps)
Ps_out = SE3(Ps.data.clone())
metrics = {}
if not is_training:
with torch.no_grad():
poses_est = model(images, Gs, intrinsics=intrinsics)
geo_loss_tr, geo_loss_rot, geo_metrics = geodesic_loss(Ps_out, poses_est, train_val=train_val)
else:
poses_est = model(images, Gs, intrinsics=intrinsics)
geo_loss_tr, geo_loss_rot, geo_metrics = geodesic_loss(Ps_out, poses_est, train_val=train_val)
loss = args.w_tr * geo_loss_tr + args.w_rot * geo_loss_rot
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
Gs = poses_est[-1].detach()
scheduler.step()
train_steps += 1
metrics.update(geo_metrics)
if gpu == 0 or args.no_ddp:
logger.push(metrics)
if i_batch % 20 == 0:
torch.set_printoptions(sci_mode=False, linewidth=150)
for local_index in range(len(poses_est)):
print('pred number:', local_index)
print('\n estimated pose')
print(poses_est[local_index].data[0,:7,:].cpu().detach())
print('ground truth pose')
print(Ps_out.data[0,:7,:].cpu().detach())
print('')
if (i_batch + 10) % 20 == 0:
print('\n metrics:', metrics, '\n')
if i_batch % 100 == 0:
print('epoch', str(epoch_count))
print('subepoch: ', str(subepoch))
print('using', train_val, 'set')
if train_steps % 10000 == 0 and (gpu == 0 or args.no_ddp) and is_training:
PATH = 'output/%s/checkpoints/%06d.pth' % (args.name, train_steps)
checkpoint = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict()}
torch.save(checkpoint, PATH)
if train_steps >= args.steps:
PATH = 'output/%s/checkpoints/%06d.pth' % (args.name, train_steps)
checkpoint = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict()}
torch.save(checkpoint, PATH)
should_keep_training = False
break
subepoch = (subepoch + 1)
if subepoch == 11 or (subepoch == 10 and (args.dataset == "interiornet" or args.dataset == "streetlearn")):
# we follow Cai et al and don't use a val set for interiornet and streetlearn
subepoch = 0
epoch_count += 1
print("finished training!")
dist.destroy_process_group()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
# training
parser.add_argument('--w_tr', type=float, default=10.0)
parser.add_argument('--w_rot', type=float, default=10.0)
parser.add_argument('--warmup', type=int, default=10000)
parser.add_argument('--batch', type=int, default=1)
parser.add_argument('--steps', type=int, default=120000)
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--clip', type=float, default=2.5)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--no_ddp', action="store_true", default=False)
parser.add_argument('--gpus', type=int, default=4)
parser.add_argument('--ckpt', help='checkpoint to restore')
parser.add_argument('--name', default='bla', help='name your experiment')
# data
parser.add_argument("--datapath")
parser.add_argument("--image_size", default=[384,512])
parser.add_argument("--exp")
parser.add_argument('--use_mini_dataset', action='store_true')
parser.add_argument('--streetlearn_interiornet_type', default='', choices=('',"T"))
parser.add_argument('--dataset', default='matterport', choices=("matterport", "interiornet", 'streetlearn'))
# model
parser.add_argument('--no_pos_encoding', action='store_true')
parser.add_argument('--noess', action='store_true')
parser.add_argument('--cross_features', action='store_true')
parser.add_argument('--use_single_softmax', action='store_true')
parser.add_argument('--l1_pos_encoding', action='store_true')
parser.add_argument('--fusion_transformer', action="store_true", default=False)
parser.add_argument('--fc_hidden_size', type=int, default=512)
parser.add_argument('--pool_size', type=int, default=60)
parser.add_argument('--transformer_depth', type=int, default=6)
args = parser.parse_args()
print(args)
PATHS = ['output/%s/checkpoints' % (args.name), 'output/%s/runs' % (args.name), 'output/%s/train_output/images' % (args.name)]
args.existing_ckpt = None
for PATH in PATHS:
try:
os.makedirs(PATH)
except:
if 'checkpoints' in PATH:
ckpts = os.listdir(PATH)
if len(ckpts) > 0:
if 'most_recent_ckpt.pth' in ckpts:
existing_ckpt = 'most_recent_ckpt.pth'
else:
ckpts = [int(i[:-4]) for i in ckpts]
ckpts.sort()
existing_ckpt = str(ckpts[-1]).zfill(6) +'.pth'
args.existing_ckpt = os.path.join(PATH, existing_ckpt)
print('existing',args.existing_ckpt)
pass
now = datetime.now()
dt_string = now.strftime("%Y-%m-%d_%H-%M")
with open('output/%s/args_%s.txt' % (args.name, dt_string), 'w') as f:
for k, v in vars(args).items():
f.write(str(k) + ' '+ str(v) + '\n')
if args.no_ddp:
train(args.gpus, args)
else:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12356'
args.world_size = args.gpus
mp.spawn(train, nprocs=args.gpus, args=(args,))